S

" ~ B 5

S

Prime .

B
(
N
|
Assembly Language

Programmer’s Guide

Revision 21.0

DOC3059-2LA

Y)

Assembly Language
Programmer’s Guide

Second Edition

by
Len Bruns

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 21.0 (Rev. 21.0).

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright C) 1987 by Prime Computer, Inc. All rights reserved.

PRIME, PR1ME, PRIMOS, and the PRIME logo are registered trademarks of
Prime Computer, Inc. DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS,
PERFORM, Prime INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY,
PRIMIX, PRISAM, PST 100, PT25, PT45, PT65, PT200, PW153, PW200, PW250,
RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250, 2350, 2450, 2550,
2650, 2655, 2755, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955, and
995511 are trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition (FDR3059-101) March 1979 for Release 16.3
Update 1 (COR3059-001) January 1980 for Release 17.2
Update 2 (PTU2600-104) June 1983 for Release 19.2
Second Edition (DOC3059-2LA) July 1987 for Release 21.0

CREDITS

Editorial: Thelma Henner
Project Support: Margaret Taft
Illustration: Mingling Chang
Document Preparation: Celeste Henry
Production: Judy Gordon

ii

y

J

3

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701

iii

D

Contents

ABOUT THIS BOOK ix
1 INTRODUCTION
2 USING PMA

Invoking the Prime Macro
Assembler (PMA) 2-1
File-naming Conventions 2-3
Assembler Messages 2-4
Listing Format 2-4
Assembly Listing Symbology 2-6
Assignment Column Codes 2-6
Instruction and Data
Column Codes
Other Listing Information
Cross-reference Listing

Symbology 2-7

3 LANGUAGE STRUCTURE

Lines
Statements

Statement Types

Statement Syntax

Continuation Lines
Statement Elements

Constants

Symbols
Terms and Expressions

Terms

Expressions
Functions of Statement Fields

Label Field

Operation Field

Operand Field

Comment Field
Pseudo-operations 3-13
Machine Instructions 3-16
Recommended Program Structure 3-17

| o
o b b bbb DWW NN

o o

1
o
=

(I,)wwwwwwwwwwwwwww
|

=2

w

4 CODE GENERATION PSEUDO-OPERATIONS

Assembly Control Pseudo-
operations (AC)

Conditional Assembly Pseudo-
operations (CA)

Symbol-Defining Pseudo-
operations (SD)

Listing Control Pseudo-
operations (LC)

5 CONSTANT DEFINITION PSEUDO-OPERATIONS

Address Definition Pseudo-
operations (AD)

Data Definition Pseudo-
operations (DD)

Storage Allocation Pseudo-
operations (SA)

6 LOADING AND LINKING PSEUDO-OPERATIONS

Loader Control Pseudo-
operations (LC)
Program Linking Pseudo-
operations (PL)

7 MACRO DEFINITION PSEUDO-OPERATIONS

Macro Definition Block
Macro Definition Pseudo-
operations (MD)

8 MACHINE INSTRUCTIONS —-- V MODE

Types of Addressing
Direct Address
Indexed Address
Indirect Address
Indirect Indexed Address
Register Usage
Saving and Restoring Registers
Register Usage Between
V Mode and I Mode
The V Mode Instruction Set
Generic Instructions
Branch Instructions
Computed Go To Instruction
Jump Instructions
Memory Reference Instructions
Process-related Operations
Restricted Instructions

vi

J4 J

J

A

9 MACHINE INSTRUCTIONS -- I MODE

Types of Addressing
Direct Address
Indexed Address
Indirect Address
Indirect Indexed Address
Addressing Through Registers
Immediate Addressing
Register Usage
Saving and Restoring Registers
Register Usage Between
I Mode and V Mode
The I Mode Instruction Set
Generic Instructions
Branch Instructions
Computed Go To Instruction
Jump Instructions
Memory Reference Instructions
Process-related Operations
Restricted Instructions

10 MACHINE INSTRUCTIONS -- IX MODE

Indirect Pointer-related
Instructions
C Language-related Instructions

11 MACRO FACILITY

Macro Definition
Argument References
Assembler Attribute References
Local Labels Within Macros

Macro Calls
Argument Values
Argument Substitution
Using Macro Calls as

Documentation

Nesting Macros

Conditional Assembly

Macro Listing

Assembler Attribute List

12 USING SUBROUTINES

Local Subroutines
Local Calls in V Mode
Local Calls in I Mode
External Subroutines
External Calls
Entrypoints to Called Routines
Argument Passing in External
Calls

vii

O WO W WY WWWW
|
W WYWoondWwWwwPE

te]
|
Vel

9-10
9-11
9-15
9-17
9-18
9-20
9-32
9-33

11-2
11-2
11-3
11-4
11-4
11-5
11-5

11-6
11-8
11-9
11-9
11-10

12-1
12-2
12-5
12-7
12-7
12-8

12-11

Returning From an External Call

The Shortcall Mechanism
General Considerations
Argument Passing in V Mode
Shortcall in I Mode
Shortcalled Functions in

V Mode and I Mode

13 LINKING AND LOADING

Differences Between SEG and BIND
Using the SEG Linker
Using the BIND Linker

14 PROGRAM EXECUTION AND DEBUGGING

Program Execution
Program Debugging
Using VPSD
VPSD Subcommand Line Format
VPSD Subcommands
Using IPSD
Invoking IPSD
Features Supported by IPSD
but not VPSD
Restrictions
IPSDO and IPSD16

APPENDICES
A ASSEMBLER ERROR MESSAGES
B INSTRUCTION SUMMARY CHART
C PRIME EXTENDED CHARACTER SET

Specifying Prime ECS Characters
Direct Entry
Octal Notation
Character String Notation
Special Meanings of Prime ECS
Characters
Assembly Programming
Considerations
Prime Extended Character Set
Table

INDEX

COMPOSITE INDEX

viii

12-11
12-15
12-15
12-16
12-18

12-20

13-2
13-2
13-4

14-1
14-2
14-2
14-3
14-6
14-14

14-17
14-20
14-21

2)

J

h)

About This Book

The Assembly Language Programmer’s Guide, Second Edition, documents the
use of the Prime Macro Assembler (PMA) as implemented at PRIMOS
Revision 21.0. It replaces the first edition of the same guide and its
various updates. It is a completely rewritten guide, whose salient
features are

e Reorganization of the text into a sequence of chapters that more
closely parallels an actual assembly. Introductory chapters
give an overview of the assembler and describe its invocation
and command line options. The remaining chapters discuss coding
the program, defining and calling macros and subroutines,
linking the program, executing, and debugging.

® Removal of most material that is duplicated in other volumes.
Where required for an understanding of the subject under
discussion, this material has been replaced by references to the
appropriate manuals. This guide is, therefore, a more compact
but no longer self-contained reference text; it is intended to
be used in conjunction with other manuals. A list of reference
documents appears later in this preface.

e Elimination of discussions of S mode and R mode. Use of these
older addressing modes is declining, and the user is urged to do
all new programming in the current V, I, and IX addressing
modes. For those users who need to maintain existing S-mode and
R-mode programs, the relevant information in the first edition
of this guide is still valid. The System Architecture Reference
Guide and the Instruction Sets Guide also continue to present
information on S mode and R mode.

ix

Summary of Chapters and Appendices

This book contains the following chapters and appendices:

Chapter 1 is an overview of the current implementation of the
assembler; Chapter 2 describes its method of invocation and the
various command line options available.

Chapter 3 is a detailed description of the language elements:
statements and their components; terms and expressions; and the
functions of statement components and fields.

Chapters 4 through 7 discuss the coding of the four major categories of
pseudo-operations and their functions and requirements.

Chapters 8 through 10 discuss, respectively, the instruction sets for
V mode, I mode, and IX mode.

Chapter 11 describes the coding and calling of macro routines and the
logic capabilities of macro processing, while Chapter 12 is devoted to
several methods of calling local and external subroutines.

Chapter 13 discusses simple linking of assembled programs using the SEG
and BIND linkers, with references to other documents for more complex
linking tasks.

Chapter 14 briefly describes the invocation of 1linked programs, and
goes on to discuss V-mode and I-mode debugging in some detail.

Three appendices provide reference material in the form of a list of
assembler error messages (Appendix A); a summary of the V, I, and IX
mode instruction sets (Appendix B); and a description of the Prime
Extended Character Set (Prime ECS) and its use (Appendix C).

2 J

J

3

Reference Documents

The following guides are frequently referred to in the

book.

text of this

System Architecture Reference Guide, DOC9473-2LA

Instruction Sets Guide, DOC9474-2LA

SEG and LOAD Reference Guide, D0OC3524-192 and update,

UPD3524-21A, for Rev. 19.4

Programmer’s Guide to BIND and EPFs, DOC8691-1LA

Advanced Programmer’s Guide, Vol. I: BIND and EPFs, DOC10055-1LA

Advanced Programmer’s Guide, Vol. II: File System, DOC1l0056-2LA

Advanced Programmer’s Guide, Vol. III: Command Environment,
DOC10057-11LA

Advanced Programmer’s Guide, Vol. 0: Introduction and Error
Codes, DOC10066-2LA

Subroutines Reference Guide, Vol. I: Language Interface,
DOC10080-2LA

Subroutines Reference Guide, Vol. II: File System, DOC10081-1LA

and update, UPD10081-11A

Subroutines Reference Guide, Vol. III: Operating System,

DOC10082-1LA and update, UPD10082-11A

Subroutines Reference Guide, Vol.

IV: User Libraries, DOCl1l0083-1LA

and update, UPD10083-11A

xi

PRIME DOCUMENTATION CONVENTIONS

The following conventions are wused in command formats, statement

formats, and in examples throughout this document.
the uses of these commands and statements in

Convention

Explanation

UPPERCASE

lowercase

Abbreviations
in format
statements

Brackets

(]

Braces

{1}

Vertical bars

within

brackets
[*A|BIC]]

In command formats, words
in uppercase indicate the
names of commands, options,
statements, and keywords.
Enter them in either upper-
case or lowercase.

In PMA statements, upper-
case elements are entered
exactly as shown, and only
in uppercase.

In command formats and PMA
statements, words coded in
lowercase indicate vari-
ables for which you must
substitute a value.

If an uppercase word in a
command format has an ab-
breviation, either the ab-
breviation is underscored or
the name and abbreviation
are placed within braces.

Brackets enclose a list of
one or more optional items.
Choose none, one, or more of
these items.

Braces enclose a 1list of
items. Choose one and only
one of these items.

Vertical bars within brack-
ets offer a choice among two
or more items. Choose either
none or one of these items;
do not choose more than one.
Asterisked value is the de-
fault.

xii

Examples illustrate

typical applications.

Example

SLIST

DATA value

LOGIN user-id

DATA value

LOGOUT

SET_QUOTA
SQ

LD -BRIEF
-SIZE

CLOSE filename
ALL

-L [*YES|NO|TTY]

Y,

J

Convention

Ellipsis

. e

Parentheses

()

Hyphen

Underscore
in examples

Apostrophe
4

Angle brackets
in examples
< >

Explanation

An ellipsis indicates that
the preceding item may be
entered more than once in
a format.

In command or statement for-
mats, you must enter paren-
theses exactly as shown.

Wherever a hyphen appears
as the first character of an
option, it 1is a required
part of that option.

In examples, wuser input is
underscored but system
prompts and output are not.

An apostrophe preceding a
number indicates that the
number is in octal.

In examples, the name of a
key enclosed within angle
brackets indicates that you
press that key.

xiii

Example

DATA value, ...

SPOOL FILE(1 2 3)
XFER MAC (FROM)=1

SPOOL -LIST

OK, RESUME MY_PROG
This is the output
of MY_PROG.CPL

OK,

1200

OK, ED <RETURN>

1
Introduction

The Prime Macro Assembler (PMA) at PRIMOS Revision 21.0 incorporates
several enhancements over previous versions. Some of these are related
to the operation of the assembler itself, while others are concerned
with new PRIMOS and hardware facilities. The following items describe
the enhancements.

e The assembler 1is capable of assembling much larger object
programs than in the past, owing to a new method of storing the
symbol table. Symbol table size has until now been limited by
the bounds of a single segment that also contains the
assembler’s executable code. The new storage mechanism uses a

segment apart from the execution segment; moreover, it is
capable of adding more symbol storage segments when the need
arises.

e Two assembler attributes that were previously designated as
spare are no longer so designated. Assembly language
programmers who used these attributes for their own purposes can
no longer do so. Attribute #108 1is designated as reserved,
while attribute #111 contains a parity value established by
whether the length of the character string defined by the most
recent DATA, BCI, or BCZ pseudo-operation was even (parity is 0)
or odd (parity is 1). Assembler attributes are listed in
Chapter 11.

1-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

In addition to formerly-supported S, R, V, and I address modes,
IX mode is supported as of Revision 21.0. IX mode operates on
50 Series Models 2550™ 9650™ 9750™ 9950TY 9955TM and 9955II™
It includes a small set of additional instructions that enable
operations involving C language pointers and characters. These
Ainstructions are described in Chapter 10.

The assembler supports an I mode addressing enhancement that
permits a general-register-relative format in memory reference
instructions and adds two indirect pointer related instructions,
ATP and LIP. GRR format (described in Chapter 9) improves the
performance of programs that must address large arrays that
could potentially cross segment boundaries. This format
operates only on the 50 Series models listed for IX mode in the
preceding paragraph.

The assembler supports the Prime extended character set
(Prime ECS). The extended character set and its implications
for assembly-language programs are described in Appendix C.

A new subroutine calling mechanism, shortcall, is described in
Chapter 12. Shortcall provides a much faster transfer of
control to and from a PMA-written subroutine than the
traditional PCL/PRTN mechanism. Shortcall, from a high-level
language caller’s point of view, is currently implemented only
in Fortran 77. I-mode PMA shortcalled routines can take
advantage of GRR, register-to-register, and immediate addressing
formats to further enhance overall program efficiency.

The assembler produces binary files that are compatible with the
BIND linker, introduced at Revision 19.4, to create runfiles in
executable program (EPF) format. A description of a simple BIND
session appears in Chapter 13.

Second Edition 1-2

4 I

J

Y

2
Using PMA

The Prime Macro Assembler (PMA) is a three-pass assembler. The first
pass creates a symbol table containing internal symbols and their
segment-relative displacements, and identifies external references.
The second pass uses the symbol table to resolve references to the
internal symbols, generates object code blocks for input to the linker
and, optionally, creates a 1listing. The third pass permits
optimization of stack and link frame references.

INVOKING THE PRIME MACRO ASSEMBLER (PMA)

PMA is invoked by the command:

PMA pathname [-option-1] [-option-2]...[-option-n]

pathname specifies the pathname of your source PMA program. The
standard pathname conventions apply. File naming conventions are
described following the option descriptions.

2-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

PMA supports the following options.

asterisks (*).

-BINARY, -B [* YES|NO|pathname]
—-ERRLIST

* -EXPLIST
—-INPUT [pathname]l, -I [pathname]

Default

-LISTING, -L [* YES|NO|TTY|SPOOL|pathname]

options are indicated by

~RESET
~ROUND
* —XREFL
-XREFS

Brief descriptions of these options are given below.

-BINARY [* YES|NO|pathname]

Specifies binary (object) file.

[YES] gives source-program.BIN if source program name has

.PMA suffix, otherwise gives B_source-program. Binary
file is in the home directory.

[NO] gives no binary file.

[pathname] allows complete specification of binary file.

—-ERRLIST

Generates errors-only listing (overrides pseudo-operation

NLIST) .

* —EXPLIST

Generates full assembly listing (overrides pseudo-operation

NLIST).
—-INPUT ([pathname]

Specifies source program.

[pathname] is the name of source program. (Do not use if
name immediately follows the PMA command) . Standard

pathname conventions apply.

-LISTING [* YES|NO|TTY|SPOOL|pathname]

Specifies listing file.

[YES] gives source-program.LIST if source program has .PMA

suffix, otherwise gives L_source-program. Listing file

is in the home directory.
[NO] gives no listing file.

[TTY] displays assembly listing at the terminal.
[SPOOL] puts listing file into line printer spool queue.
[pathname] allows complete specification of listing file.

Second Edition 2-2

J

J

D)

USING PMA

-RESET
Resets A, B, and X Register settings.
—-ROUND

Rounds rather than truncates conversion of real numbers to
decimal.

* —-XREFL
Generates complete cross reference listing.
-XREFS

Omits from cross reference list symbols that are defined but
not used.

FILE NAMING CONVENTIONS

For consistency with Prime’s other language processors, the pathname of
the source file should be suffixed with a language name code. For the
assembler, the code 1is .PMA. The form of the source filename affects
the form of the default names of the binary and listing files: if the
source filename suffix is not .PMA, the default binary and listing
filenames are prefixed by B_ and L_, respectively:; if the source
filename suffix 1s .PMA, the default binary and listing filenames are

suffixed by .BIN and .LIST, respectively. The .PMA form is

recommended, both for consistency and for ease of use in subsequent
operations such as linking and invoking the resulting programs.

The defaults for both binary and listing filenames can be overridden by
specifying different pathnames as arguments to the -BINARY and -LISTING
options, respectively. The -LISTING option also accepts TTY as an
argument to cause the assembly listing to appear at your terminal.

FILE USAGE

Three files may be involved during an assembly:

File Type PRIMOS File unit
Source 1

Listing 2

Binary 3

PMA automatically opens files for listing and binary output. They are
closed at the termination of each assembler run.

2-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

The PRIMOS commands LISTING and BINARY permit you to concatenate two or
more listing files, and two or more binary files, respectively. These
commands, when used before a series of PMA invocations, open file units
2 (for the 1listing file) and 3 (for the binary file). The assembler
uses them to write the files, and leaves them open when it returns
control to PRIMOS. Each subsequent invocation of the assembler appends
its listing and binary outputs to those already written. The files can
be closed by use of the PRIMOS CLOSE command. Refer to the PRIMOS
Commands Reference Guide for descriptions of these commands.

ASSEMBLER MESSAGES

After the assembler processes a program’s END statement, it prints a
message, terminates assembly, and returns control to PRIMOS command
level. The message contains a decimal error count, the assembler
version number, and a copyright statement:

<nn> ERRORS [PMA <version> Copyright (c) Prime Computer, Inc. <year>]

LISTING FORMAT

Figure 2-1 shows a section of a typical assembly listing and
illustrates the main features.

When the assembly listing file is printed using the SPOOL command with
no options, each page begins with a header and contains a page number.
(Some Spooler options disable headers and pagination; refer to the
description of the SPOOL command in the PRIMOS Commands Reference
Guide.) The first statement in a program is used as the initial page
header. If column 1 of any source statement contains an apostrophe
(’), columns 3 through 80 of that statement become the header for all
pages that follow, until a new header is specified.

At the end of the assembly 1listing appears a cross reference table
containing each symbol’s name (in alphabetical order), the symbol’s
address value with a code indicating the segment in which it resides,
and a list of all line numbers defining or referring to the symbol.
The address values are in octal unless the PCVH pseudo-operation

specifies hexadecimal listing. Each reference 1s identified by a
four-digit line number. The NLST pseudo-operation suppresses the cross
reference listing; the -XREFS option suppresses symbols which have

been defined but not used.

Second Edition 2-4

y

J

USING PMA

SAMPLE ASSEMBLER LISTING

000000:
000001:
000002:
000004:
000005:
000006:
000010:
000012:
000014:
000015:
000016:
000017:
000020:

000400>
000401>

000421>

SEG

02.000015
16.000016
015414.000017
000015
04.000400L
061432.000422L
001300.000400L
061432.000424L
000611
000003
000005
000000
000012

000000
000000
000012
000011
000000
177400
014000

000421

00.000000A

000422> 000000.000000E

000424>

TEXT SIZE: PROC 000021

B
ECB$S
M

ouT
START
TODEC
TONL
X

000000.000000E

000017 0004
000401L 0016
000015 0002
000400L 0006
000000 0002
000000E 0007
000000E 0009
000016 0003

0000 ERRORS [PMA Rev. 21

(0001)

(0001)
(0002) START
(0003)
(0004)
(0005)
(0006)
(0007)
(0008)
(0009)
(0010)
(0011)
(0012)
(0013)

w XX

(0014)
(0015) out
(0016) ECBS

(0017)

0013
0017
0011
0008 0015
0016

0012

.0 Copyright (c) Prime Computer, Inc. 1986]

LINK 000026

SAMPLE ASSEMBLER LISTING

SEG
LDA
MPY
ADL
PIMA
STA
CALL
AP
CALL
PRTN
DATA
DATA
DATA

LINK

DEC
ECB

END

STACK 000012

M
X
B

ouT
TODEC
OuUT, SL
TONL

10L

START

ECB$

Sample Assembler Listing
Figure 2-

2-5

1

Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

ASSEMBLY LISTING SYMBOLOGY

The first two columns of an assembly listing show the octal
representations of the addresses the assembler assigns to each area
allocated for storage of machine instruction or data strings, and the
generated strings themselves, if any. Appended to each entry in these
columns is a code (a blank is considered a code). These codes are
described in the following two sections.

Assignment Column Codes

The codes in the first assembly listing column indicate the segment to
which the assembler assigns the accompanying generated string. The
meanings of the codes are:

: String is assigned to the procedure segment
> String is assigned to the linkage segment

The assembler can also allocate space in the stack segment (by a DYNM
pseudo-operation); these assignments have no entry in the first
column, but have their stack-relative addresses listed in the second
column with a blank assignment code.

Instruction and Data Column Codes

The second assembly listing column contains the assembler-generated
instruction or data string. Its entries vary in length.

For data strings an entry contains six octal digits and represents one
halfword (16 bits) of storage. For pseudo-operations such as DYNM,
EQU, ORG, and END, it can also represent a 1l6-bit quantity that can be
interpreted as either a numeric constant or an address, depending on
how the assembler uses it. The entry is terminated by a blank.

For generic instructions (those that do not reference memory) an entry
contains six digits and represents a 16-bit octal operation code. For
memory reference instructions an entry consists of two parts separated
by a period. The first part represents the operation code and contains
two digits (for short-form instructions) or six digits (for Ilong-form
instructions). The second part represents a referenced memory address
and is followed by a code indicating the storage class of the addressed
item.

Second Edition 2-6

J

J

3

USING PMA

The codes associated with the instruction and data column have the
following meanings:

blank Addressed item is relative to the current module

A Addressed item is an absolute number

E Addressed item is external to the program

L Addressed item is relative to the linkage base (LB)

P Addressed item is relative to the procedure base (PB)
R Addressed item is relative to a general register

(I mode only)
Addressed item is relative to the stack base (SB)
Addressed item is relative to the auxiliary base (XB)

X

Other Listing Information

The remainder of the assembly listing consists of source program line
images and, shown in parentheses, the assembler-assigned line number of
each statement. These line numbers are for the benefit of the cross
reference listing, described in the next section.

CROSS REFERENCE LISTING SYMBOLOGY

The cross reference 1listing shows, for each symbol defined or
referenced in a program, the symbol name, its storage address and
class, and one or more numbers indicating the statement line number in
which it is defined or referenced.

The storage class codes that can appear in a cross reference listing

are the same as those that can appear in the instruction and data
column of the assembly listing; their meanings are also the same.

2-7 Second Edition

A

)

3
Language Structure

This chapter describes the structure and function of Prime Macro
Assembler language statements and the elements with which they are
constructed.

The PMA language structure is both flexible and simple. For example,
here is a program which includes three pseudo-operations, a machine
instruction and a literal.

SEG Pseudo-operation —- assemble in V-mode
LDA =’301 Machine instruction with literal operand
CALL T10OB Pseudo-operation -- subroutine call (generates machine
instruction).
END Pseudo-operation —- defines end of source code.
LINES

Input to the assembler consists of statement, comment, and header
lines. The basic unit of information is the line, which consists of
fields separated by spaces. Line syntax is described later in this
chapter.

All lines except comment and header lines must be entered in uppercase

characters. Comment lines, header lines, and the comment fields of
statement lines can be in uppercase or lowercase.

3-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

There are three basic line formats:

Comment Line Column 1 contains an asterisk (*). The entire line
is treated as a comment.

Header Line Column 1 contains an apostrophe (‘). The rest of
the line 1is wused as a page title for subsequent
pages.

Statement Statements are described in the following sections.

STATEMENTS

Every statement causes the assembler either to generate machine code
(instructions or data) or to take some assembler or linker related
action.

Statement Types

There are four kinds of statements:

Machine instructions
Generate the instructions and data the program 1is to execute
and use. Machine instructions are fully described in Chapters
8, 9, and 10, and in the Instruction Sets Guide.

Pseudo-operations
Direct the assembler to perform some function during an
assembly. With few exceptions, they do not generate machine
instructions; they do, however, frequently generate data.
Pseudo-operations are described in Chapters 4 through 7.

Macro definitions
Delimit blocks of code or data (or both) that can be called as
if they were instructions. This group also contains some
pseudo-operations that provide a logic capability within a
macro definition block. See Chapter 7.

Macro calls

Invoke code previously defined in macro definitions. These are
described in Chapter 11.

Second Edition 3-2

4 J

J

9

r

LANGUAGE STRUCTURE

Statement Syntax

Statements can have up to four fields, delimited by spaces:

[label] operation [operand]}... [comment]

label The first character of a label must be in column 1 of a
line. If a statement does not have a label, the first
column must be blank. Labels are from 1 to 32
characters in length. The first character is a letter

(A through 2), and the remaining characters can be
letters, numerals (0 through 9), the dollar sign ($), or
underscore (_).

operation The operation field is the only field required in all
types of instructions. It contains the mnemonic code
for a machine instruction or a pseudo-operation. It is
separated from the label field, if any, by one or more

spaces.
operand The number of operands and their meanings are
operation-specific. Some statements do not require an
operand, while others require one or more. The first

operand is separated from the operation code by one or
more spaces; multiple operands are separated by commas,
and there must be no intervening spaces unless an
operand is a 1literal that contains spaces. Literal
operands and operands defining character constants can
contain any character in the Prime ECS character set
(see Appendix C).

comments All text following either column 72 or two spaces after
the last operand (10 spaces or following a colon in
macro calls) is treated as a comment. Comments can
contain any character in the Prime ECS character set.

Continuation Lines

Any statement can be interrupted by a semicolon (;) and continued on
the next line. Any text following the semicolon is treated as a
comment. Processing of the statement continues with the first nonspace
character in the following line. Semicolons appearing within comments
are not interpreted as continuation indicators. A semicolon that
appears as a character in a literal must be preceded by the assembler’s
escape character, the exclamation point (!).

3-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

STATEMENT ELEMENTS

Statement elements -- labels, operation codes, and operands —-- are
composed of constants and symbols. These are made up of the subset of
the printing ASCII characters defined for labels, above. The entire
Prime extended character set (Prime-ECS), printing and nonprinting, can
be used in comments, macro instruction operands, literals, and
constants. Refer to Appendix C for a discussion of Prime-ECS.

Constants

Constants are explicit data values. They are most often used in
operands of data-defining pseudo-operations and in literal operands.
They can be used to represent bit configurations, absolute addresses,
program-relative addresses (displacements), and data. A constant may
be any of the following data types:

Decimal
Binary
Hexadecimal
Octal
Character
Address

S ols

Symbols are alphanumeric strings which represent locations or data.
They may be from 1 to 32 characters in length. The first character
must be a letter (A through Z), and the remaining characters may be
letters, numerals (0 through 9), the dollar sign ($), or underscore
(_). Symbols containing more than 32 characters are allowed in the
source code, but only the first 32 characters are examined by the
assembler.

TERMS AND EXPRESSIONS

An operand can be constructed of one or more elements called terms,
combined into an expression by use of one or more operators. These are
described in this section.

Terms

A term is the smallest element that represents a distinct value. It
represents a single precision signed integer and may be a constant or a

symbol.

Second Edition 3-4

J

J

b

h)

LANGUAGE STRUCTURE

Every term, whether used alone or in an expression, has both a value
and a mode. These attributes either are defined by the assembler and
related to the procedure, stack, link, or common location counter, or
they are inherent in the term itself. Symbols defined by the EQU, SET,
and XSET pseudo-operations receive both the mode and the value of the
term or expression in their operand fields; 1labels, at the time of
their definition, take the mode and wvalue of the current location
counter. Refer to the description of the ORG statement in Chapter 4
for a discussion of how the mode of the location counter is set). Some
examples of terms are:

r123 Octal constant

C’A’ Character (string) constant

BE'fA Symbol

1.23E2 Invalid because it is a floating point number; it does

not have a single precision integer value

C’ABC’ Invalid because the value is too large for 16 bits

Value of a Term: The value of a term is its single precision numeric
equivalent. It can represent either an address relative to some base
in the program or an absolute number. Some examples of symbolic term
definitions, usages, and values are shown below.

Symbol Usage Explanation

LABSYM LABSYM LDA LOC LABSYM is a label symbol whose value
is the address (program counter value)
of the instruction LDA LOC.

DATSYM DATSYM DATA ‘10 DATSYM is a label symbol whose value
is the address (program counter
value) of the constant 710.

ADSYM ADSYM DAC LOC ADSYM is a label symbol whose value
is the address (program counter
value) of the address constant LOC.

ABSSYM ABSSYM EQU 10 ABSSYM is a symbol whose value is 710.

CHRSYM CHRSYM EQU C'A’ CHRSYM is a symbol whose value is
A<space> (’140640).

3-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

Mode of a Term: The mode

of a term defines whether the value

associated with a symbol is absolute or relative to some base. A term
can have one of the following modes:

Absolute

Procedure Relative

Common Relative

External

Stack Base Relative

Procedure Absolute

Linkage Base Relative

Auxiliary Base Relative

Second Edition

The value of the symbol is independent of
its position relative to any base.
Symbols equated to absolute terms or to
the results of expressions involving only
absolute terms have a mode of absolute.

The symbol is defined relative to the
start of the module; it is identified by
an asterisk if the current location
counter’s mode is procedure relative, or
by reference to another procedure
relative label.

The symbol is defined relative to a data
area defined by a COMM pseudo-operation.
This data area can be shared by several
independently assembled or compiled
routines.

The symbol is defined in a separately
assembled module and is identified in the
current module by an EXT
pseudo-operation.

The symbol is defined relative to the
start of the current program’s stack
area. Variables defined by the DYNM
pseudo-operation or by SB% + value have a
mode of stack relative.

The symbol is defined relative to the
start of the procedure segment and is
identified by PB% + value.

The symbol is defined relative to the
start of the program’s linkage area and
is identified by LB% + value, or * if the
current location counter’s mode is
linkage relative.

The symbol is defined relative to the

contents of the auxiliary base register
and is identified by XB% + value.

3-6

J

J

LANGUAGE STRUCTURE

The mode of a term is represented internally in the assembler by a
number from O through 7. The modes and their numeric equivalents are:

Absolute

Procedure relative
Common

External

Stack base relative
Procedure absolute
Linkage base relative
Auxiliary base relative

SNovmdbd wbhhEE o

A term’s mode number can be represented in an assembly statement by
prefixing the symbol with a left bracket ([):

[ABC

It is thus possible to determine, for example, whether the mode of the
term ABC is stack base relative or linkage base relative by a sequence
such as

MODE SET [ABC
IF MODE .EQ. 4 statement_1
IF MODE .EQ. 6 statement_2

The assembler generates statement_1 if ABC is a stack based label, or
statement_2 if it is a linkage based label.

Refer to the discussion of conditional assembly in Chapter 4 for a
description of the use of IF and other conditional statements.

Expressions

Expressions contain one or more terms (constants or symbols) joined by
operators. Expressions may contain arithmetic, logical, relational and
shift operators.

3-7 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'’S GUIDE

Arithmetic Operators:

and division operations:

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division

Perform addition,

Example

3474

£10-"3

£20%710

I23/I

10

Division retains only.the integer part

Logical Operators:

Operator Meaning
.OR. Logical OR
.XOR. Logical
Exclusive OR
.AND Logical AND

Relational Operators:

Example

subtraction, multiplication,

Result (Octal)

000007

000005

000200

000002

of the quotient.

*123.0R." 456

"123.X0OR."456

"123.AND.’ 456

a result of 0 if false and 1 if true.

Operator Relation
.EQ. equal
.NE. not equal
.GT. greater than
.GE. greater than
or equal
.LE. less than
or equal
.LT. less than

Second Edition

Exanmple

123
123

123
123

r123
456

r123
123

r123.
r123.

r123.
r456.

3-8

.EQ.
.EQ.

.NE.
.NE.

.GT.
.GT.

.GE.
.GE.

LE.
LE.

LT.
LT.

Perform a comparison of

r123
’456

r123
"456

123
7123

r123
"456

r123
"456

"456
123

Perform a logical operation on two 16-bit operands:

Result (Octal)

000577

000575

000002

two 1l6-bit operands with

Result (Octal)

000001
000000

000000
000001

000000
000001

000001
000000

000001
000001

000001
000000

J

M)

3

LANGUAGE STRUCTURE

Shift Operators: Perform logical right or left shift of an expression,

using the syntax:

argument-expression .LS. shift-count-expression
.RS.
Operator Meaning Example Result (Octal)
.LS. Left Shift r123.1LS.’3 001230
.RS. Right sShift r123.RS.’3 000012
Expression Conventions: The following conventions apply to the

construction of expressions.

Spaces Operators can be preceded and followed by a
single space (more than one space causes the
assembler to treat the rest of the 1line as a
comment) .

Signs The operands for arithmetic operators may be
signed.

Operator Priority In expressions with more than one operator, the
operator with the highest priority is performed
first. In cases of equal priority, the
evaluation proceeds from left to right.
Parentheses can be used to alter the order of

evaluation.

Priority Operator

Highest x /
+ -
.RS. .LS.
.GT. .GE. .EQ.
.NE. .LE. .LT.
.AND.
.OR.

Lowest .XOR.

3-9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

Resultant Mode: For all operations except addition and subtraction,
both operands’ modes must be absolute; the resultant mode is absolute.

When an addition operator is used, no more than one of the terms can be
relative. If one term is relative, the resultant mode is the mode of
the relative term; if all terms are absolute, the resultant mode is
absolute.

When a subtraction operator is used, one or both terms can be relative.
If both are relative, they must be relative to the same base; the
resultant mode is absolute. When one term is relative, it must be the
first term; the resultant mode is the mode of the relative term.

For multiplication and division, both terms must be absolute; the
resultant mode 1is absolute. For division, if the resultant value is
not an integer, the fractional part is discarded and the value is the
integer part.

FUNCTIONS OF STATEMENT FIELDS

This section describes the functions of the four fields of all assembly
language statements.

Label Field

The label field equates a symbolic name appearing within it to a
numeric value. The value can represent either the address of a program
element (instruction or data) or a numeric constant. In either case,
the value 1is a 16-bit integer quantity, and can range from 0 through
65535 decimal (0 through 177777 octal), inclusive.

A symbolic name is defined when it appears in a statement’s label
field. It 1is referenced when it appears in an operand field. This
means that when a symbolic name, or label, appears in the label field,
the assembler assigns a value to the name. The value assigned depends
on the type of statement. For an instruction statement, the value is
the location of the instruction relative to the start of the program.
For a psuedo-operation, the value depends on the function of the
pseudo-operation (See Chapters 4 through 7 for descriptions of these
functions.)

_When a label appears in the operand field of a statement, the assembler
retrieves the assigned value and substitutes it for the symbolic name.
For all machine instructions and most pseudo-operations, the relative
placement in a program of statements that define labels and those that
reference them is immaterial. A few pseudo-operations, however,
require that labels used in their operand fields be defined before they
are referenced. These requirements will be indicated where appropriate
in the descriptions of pseudo-operations later in this guide.

Second Edition 3-10

4

J

LANGUAGE STRUCTURE

Operation Field

The operation field of a statement contains the mnemonic operation code
of an instruction or a pseudo-operation. An instruction mnemonic
causes the generation of a machine instruction; a pseudo-operation
mnemonic causes the assembler to take some action which may or may not
result in the generation of machine code. An ORG pseudo-operation, for
example, causes the assembler to reset its current location pointer to
the value specified in its operand field, and assigns that value to the
ORG’s label if there is one; an EQU pseudo-operation simply assigns a
numeric value to a label. A BSS pseudo-operation allocates a specified
number of memory locations but does not fill them with anything; a
DATA or DEC pseudo-operation allocates memory locations and stores
specified values in them.

In an instruction statement, a % appended to the mnemonic forces the
assembler to generate this instruction in long (32-bit) form, even
though it would normally be generated in short form. The % notation is
valid only in V mode. (Short and long form instructions are described

in Chapters 8 and 9.)

A # appended to the mnemonic forces the assembler to generate this
instruction in short (16-bit) form, even though it would normally be
generated in long form (this can be done only in certain cases; see
Chapters 8 and 9 for more information). The # notation is valid only
in V mode.

Operand Field

The operand field, for those statements that require one, contains the
representation of the program element to be acted upon. For a machine
instruction it is normally an address expression, and may include
indirection, indexing, and base register references. It can also, in
certain cases, contain a numeric constant. Refer to TYPES OF
ADDRESSING in Chapter 8 (V mode) or Chapter 9 (I mode) of this guide,
and to Chapter 3 of the System Architecture Reference Guide. For
pseudo-operations, the operand field performs a wide variety of
functions, from defining the values of constants to controlling the
actions of the linker after assembly is completed. Chapters 4 through
7 detail the actions and operand requirements of pseudo-operations.

Asterisk in the Operand Field: An asterisk in an operand field has two
functions. One is to represent an address relative to the current
value of the assembler location counter. When used by itself, its
value is equal to the displacement, from the beginning of the procedure
or linkage segment, of the statement the assembler 1is currently
processing. It 1is frequently used along with a numeric increment
(*+nn) or decrement (*-nn) to represent a displacement of nn halfwords
relative to the current location.

3-11 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

The asterisk’s other function is to indicate indirection, with or
without indexing; in these cases it always appears following an
address, possibly along with an index designator. It is separated from
the address by a comma. Indirect addressing is described in Chapters 8
(V mode) and 9 (I mode).

Equal sign in the Operand Field: An equal sign defines a literal value
that is to be used by an instruction. A literal is represented as a
constant preceded by an equal sign. The following examples show the
representations of various kinds of 1literal operands with a load
instruction. In each case, what is loaded is the binary equivalent of
the literal operand. If the Dbinary form does not exactly fill the
indicated number of bits, it is right-justified with leading zero bits
for numeric literals, and left-justified with trailing space characters
for character literals. Floating point literals always take exactly
the indicated number of bits.

LDA =123 decimal literal (16 bits)

1LDL =123L long decimal literal (32 bits)

LDA ='123 octal literal (16 bits)

LDA =%110010 binary literal (16 bits)

LDA =$2FF hexadecimal literal (16 bits)

LDA =C’'AB’ character literal (16 bits)

LDL =C’ABC’ character literal (32 bits), space-filled

ILDL =C’ABCD’ character literal (32 bits)

LDL =Z’'ABC’ character literal (32 bits), zero-filled

LDA =EXPR literal whose value is expression; see
the following text

FLD =12.3E4 single~precision floating point (32 bits)

DFLD =12.3D4 double-precision floating point (64 bits)

QFLD =12.30Q4 quad-precision floating point (128 bits)

When a literal’s value is defined by an expression, any symbols in that
expression must be defined by EQU, SET, or XSET statements (described
in Chapter 4). The expression’s mode must be absolute and its value
must be one that can be expressed as a 16-bit integer. (Refer to the
discussion of terms and expressions, earlier in this chapter.) If SET
or XSET is used to define a symbol, the symbol’s value is that computed
in the most recent SET or XSET defining that symbol.

Note

From the assembler’s perspective, the size or type of a data
literal does not have to match what 1is expected by an
instruction using the literal. For example, a statement such
as LDA =C’'ABCD’ (a 32-bit literal) is not flagged as an error,
although only the first 16 bits of the literal are loaded into
the A register (a 16-bit register).

Second Edition 3-12

4

J

D

LANGUAGE STRUCTURE

In V mode, the assembler treats the numeric value of a literal as if it
were a label assigned to a constant containing the literal’s value. It
reserves storage for the constant and stores the constant in that
location. The assembler generates the constant’s storage address as
the operand of the instruction.

In I mode, a number of instructions permit a form of addressing known
as immediate. (Refer to Immediate Addressing, in Chapter 9.) If an
instruction allows immediate addressing and the 1literal value is
expressible in 16 bits, the literal is stored in the second halfword of
the instruction itself; otherwise it is treated and stored as in V
mode.

Refer to the descriptions of the RLIT and FIN pseudo-operations in
Chapter 5 for information on how and where literals are stored.

Comment Field

The comment field provides space for program documentation. It is

generally used to describe the mechanics of a procedure. Unless
otherwise noted, any text which begins two or more spaces after the
last operand is treated by the assembler as a comment field. In a

macro call, a comment field must either begin 10 or more spaces after
the last operand, or be preceded by a colon (:).

PSEUDO-OPERATIONS

Pseudo-operation statements provide directions to the assembler or to
the linker. Unlike machine instructions, they direct the actions of
the assembler itself, rather than the actions of the assembled program.
Some pseudo-operations generate machine code, but most do not. Those
that do, define and allocate storage for data that the program is to
use, in the form of data constants, address constants, or reserved
areas for data storage or buffers.

Pseudo-operation functions described in this guide are of several

classes. A list of these classes, and the chapters in which their
detailed descriptions appear, follows.

3-13 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

AC Assembly control (Chapter 4)
AD Address definition (Chapter 5)
CA Conditional assembly (Chapter 4)
DD Data definition (Chapter 5)

LC Listing control (Chapter 4)

LT Literal control (Chapter 5)

LO Loader control (Chapter 6)

MD Macro definition (Chapter 7)
PL Program linking (Chapter 6)

SA Storage allocation (Chapter 5)
sD Symbol definition (Chapter 4)

Table 3-1 contains an alphabetical listing of all the
pseudo-operations, their functional class and their restrictions, if
any.

All pseudo-operations have an operation field; most also have an
operand field, separated from the operation field by spaces. Labels
are usually optional, but some pseudo-operations either require a label
to be present, or prohibit it.

The operation field contains the mnemonic name that identifies the
pseudo-operation.

The operand field, for those pseudo-operations that require one, can
contain one or more terms separated by single spaces or commas. Terms
can be constants, symbols, or expressions as defined earlier in this
chapter. In certain operations, such as BCI, terms can also consist of
ASCII character strings.

Address expressions are evaluated as 16-bit integer values and used as
a 16-bit memory address, unless otherwise stated. Certain statements
(DAC and XAC) accept indirect addressing and indexing symbols. These
are interpreted according to the addressing mode in effect when they
are encountered.

Second Edition 3-14

J

J

3

b

Table 3-1

Pseudo-Operation Summary

LANGUAGE STRUCTURE

Name Funccion Class Comment
AP Argument pointer AD

BACK Loop back CA Macro definition

only

BCI Define ASCII string (blank £ill) DD

BCZ Define ASCII string (zero f£ill) DD

BES Allocate block ending with symbol SA

BSS Allocate block starting with symbol SA

BSZ Allocate block set to zeros SA

CALL External subroutine reference PL

CENT Conditional entry LO

COMM FORTRAN compatible common SA

D32I Use 321 address mode LO

D64V Use 64V address mode LO

DAC Define 16-bit address constant DD

DATA Define data constant DD

DEC Define decimal integer constant DD

DFTB Define table block ca

DFVT Define value table CcA

DUII Define UII LO

DYMN Define stack-relative symbol sD

DYNT Direct entry definition PL

ECB Entry control block PL

EJCT Eject page LC

ELM Enter loader mode LO

ELSE Reverse conditional assembly CA

END End of source statements AC

ENDC End conditional assembly area cA

ENDM End macro definition MP Macro definition

only

ENT Define entry point PL

EQU Fixed symbol definition SD

EXT External reference PL

FAIL Force error message CA

FIN Insert literals LT

GO Forward reference CA

HEX Define hexadecimal integer constant DD

IFTT If table true CA

IFTF If table false ca

IFVT If value true CA

IF If true CA

IFx Arithmetic conditional if CcA

IP Indirect pointer AD

LINK Put code in linkage segment AC

LIR Load if required Lo

LIST Enable listing LC

LSMD List macro expansions data only LC

LSTM List macro expansions LC

3-15

Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

Table 3-1 (continued)
Pseudo-Operation Summary

Name Function Class Comment

MAC Begin macro definition MP Macro definition
only

NLSM Don’t List macro expansions LC

NLST Inhibit listing LC

OCT Define octal integer constant DD

ORG Define origin location AC

PCVH Print cross reference values in HEX LC

PROC Put code in procedure segment AC

RLIT Optimize literals LT

SAY Print message MP

SCT Select code within macro MP

SCTL Select code from macro list MP

SEG Segmentation assembly -- V-mode AC Must be first

statement in
source program
SEGR Segmentation assembly -- I-mode AC Must be first
statement in
source program

SET Changeable symbol definition SD
SETB Set base sector LO
SUBR Define entry point PL
SYML Allow eight-character symbols PL
VED Define variable fields DD
XAC External address definition AD
XSET Changeable symbol defintion SD

MACHINE INSTRUCTIONS

Machine instruction statements generate the instructions that the
assembled program is to execute. Machine instructions described in
this guide are divided into several groups:

Generic

Branch and jump
Memory reference
Decimal

Floating point
Character
Process control
Restricted

All machine instructions are described in Chapters 8, 9, and 10 (for V,
I, and IX modes respectively). A summary chart of all instructions for
these modes is given in Appendix B.

Second Edition 3-16

J

J

Y

LANGUAGE STRUCTURE

RECOMMENDED PROGRAM STRUCTURE

PMA makes using the segmented architecture easy. The programmer can
write straightforward code, such as LDA ADDR; the assembler, depending
on the definition of ADDR, may generate a short or long instruction and
may reference the stack area, the linkage area, the procedure area, or
a temporary area. This is possible because symbols, during assembly,
carry a great deal of state information with them.

The structure of a V-mode or I-mode program should reflect the system
architecture design for the separation of code and data. The
recommended structure is:

Prologue
SEG/SEGR Indicates segmented addressing in V/I mode
RLIT Puts literals in the procedure area
COMM Declares FORTRAN-compatible COMMON areas
ENT Declares entry point(s) to this program

Procedure/Stack Area

Executable code and dynamic storage

Data Area

LINK Defines linkage area containing static variables
ECB Declares entry control block for this program
End
END Terminates assembly
All of the above declarations are pseudo-operations. Descriptions of

these and other pseudo-operations appear in Chapters 4 through 7 of
this guide.

3-17 Second Edition

3

4
Code Generation
Pseudo-Operations

This chapter describes a group of pseudo-operations that control such
things as the placement of generated code within a program (AC),
equating symbols to absolute numeric values (SD), and conditional
assembly of blocks of statements (CA). Assembly listing control
pseudo-operations (LC) are also included in this chapter.

ASSEMBLY CONTROL PSEUDO-OPERATIONS (AC)

Assembly control pseudo-operations affect the placement of generated
code and the addressing mode in which it is generated. The statements
in this group are listed below.

Name Function Restrictions

END End of source statements.

LINK Put code in linkage segment.

ORG Define origin location.
PROC Put code in procedure segment.
SEG Segmented assembly (V mode). Must appear before any
generated code.
SEGR Segmented assembly (I mode) . Must appear before any
generated code.
4-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

P [label] END [address-expression]

Terminates assembly of the source program. All literals accumulated
since either the start of the program, or the last FIN statement, are
assigned locations starting at the current location count. Refer to
FIN and RLIT pseudo-operations in Chapter 5 for specific information on
how these statements can affect literal placement.

The label field is permitted, but it serves no useful purpose and is
usually omitted. While address-expression is indicated as optional, it
is required for a main program, that is, the module that contains the
entry point of the executable program called from the command
processor. The address expression 1is the label specified in the ECB
statement that defines the entry control block for this program. The
typical sequence is:

BEGIN first executable instruction

LINK

static data declarations

ECB_LOC ECB BEGIN
END ECB_LOC

End statements for modules called as subroutines do not need an
operand; these modules’ entry points are declared in any of several
ways, as described in Chapter 12, USING SUBROUTINES.

P LINK

Places subsequent code in the linkage segment. The assembler’s
location counter mode is set to linkage relative and its value 1is set
to one more than the highest value previously used in the linkage area.
It starts at linkage-relative address ’400. Linkage-relative mode is
terminated by a PROC or COMM pseudo-operation.

The LINK pseudo-operation requires neither a label field nor an operand
field.

Second Edition 4-2

y

J

-
-

CODE GENERATION PSEUDO-OPERATIONS

’ [label] ORG address-expression

Sets the assembler location counter equal to the mode and value of
address—-expression. Symbolic terms in the expression must have been
previously defined. An expression containing an asterisk sets the mode
and value to the current mode and value of the current location
counter. The value may be modified by any terms that have absolute
values, such as constants or symbols equated to constants.

The mode of the address expression may be absolute, procedure relative,
linkage relative, or common, depending on the mode that was 1in effect
when any symbolic term in address—expression was defined. The value of
the location counter is set to the value of the address expression. If
the mode of the address expression is absolute, then the mode of the
location counter remains unchanged. In all other cases, whether
relative, linkage, or common, both the mode and the value of the
location counter are set to that of the address expression.

1f a label appears in the label field, both the value and mode of the
address expression are assigned to that label.

Be careful, when using an ORG statement in the procedure segment, that
the preceding executable code is terminated by some kind of control
transfer instruction such as a branch or Jjump; otherwise it is
possible for execution to fall into an area containing data or
uninitialized memory. If this happens, run-time errors such as ILLEGAL
INSTRUCTION or ACCESS VIOLATION are likely to result.

p rrOC

Places subsequent code in the procedure segment. The assembler’s
location counter mode is set to procedure relative and its value is set
to one more than the highest value previously wused in the procedure
segment. It begins at procedure-relative address 0 (zero) .
Procedure-relative mode is terminated by a LINK or COMM
pseudo-operation.

The assembler’s location counter mode is procedure-relative by default
at the beginning of an assembly.

The PROC pseudo-operation requires neither a label field nor an operand
field.

IMPURE

P sEG |:PURE }

Directs the assembler to create a segmented V-mode program. SEG must
appear before any instruction, pseudo-operation, or macro call which
generates instructions or data.

4-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

PURE and IMPURE are used only in a program that is to be linked by the
BIND linker; they are ignored for programs linked by the SEG loader.
(See Chapter 13, Linking and Loading, for more information on SEG and
BIND.) PURE 1is the default, and need not be used if no locations
within the procedure segment are modified by the program. IMPURE 1is
required if the program modifies locations within the procedure
segment. BIND in this case creates an impure (nonshared) procedure
segment; that is, when both pure and impure procedures are linked in a
single BIND run, separate shared and nonshared segments result.

SEG has the following effects:
e Sets the assembler into a three-pass mode, so that it can
optimize stack and link frame references.
o Sets the instruction and address resolution mode to 64V.

° Initializes the assembler location counter to procedure
relative zero.

IMPURE

P sEGR [PURE :I

Directs the assembler to create a segmented I-mode program. SEGR must
appear before any instruction, pseudo-operation, or macro call which
generates instructions or data.

See the description of the SEG statement above for a discussion of the
PURE and IMPURE operands.

SEGR has the following effects:
° Sets the assembler into a three-pass mode so that it can
optimize stack and link frame references.
) Sets the instruction and address resolution mode to 32I.

. Initializes the assembler location counter to procedure rela-
tive zero.

Second Edition 4-4

4 J

J

3

CODE GENERATION PSEUDO-OPERATIONS

CONDITIONAL ASSEMBLY PSEUDQO-OPERATIONS (CA)

Conditional assembly pseudo-operations permit the selective inclusion
or omission of one or more program statements, depending on a
true/false condition test using internal assembler variables.

The statements in this group are listed below.

Name Function Restrictions

BACK Loop back. Macro definition only
DFTR Define a symbol table

DFVT Define a value table

ELSE Start FALSE conditional

assembly block

ENDC End conditional assembly
block

FAIL Force error message

GO Skip forward

IF Start TRUE conditional

assembly block

IFx Start TRUE conditional
assembly block

P> [label-1] BACK [TO] label-2

Directs the assembler to repeat source statements that have already
been assembled, beginning with the statement specified by label-2.

label-1 and TO are optional (TO is used only to improve readability).

The operand label-2 must have been previously defined. It must appear
in the label field of a SET statement whose operand is an asterisk (*).
The correct sequence of statements is shown on the next page.

BACK statements are permitted only within a macro definition. They are
normally used after one of the forms of IF pseudo-operations described
below. Both BACK and label-2 must lie within the same MAC-ENDM range.
(See Chapter 7 for descriptions of MAC and ENDM pseudo-operations.)

4-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'’S GUIDE

The relationship between SET and BACK statements is shown in the
following structure.

MACNAME MAC

label SET *

code to be repeated

IFx condition
BACK label go back if condition true
ELSE/ENDC required with IFx
ENDM
P> label DFTB (symbol-1, expression-1)[...]

Creates a table of symbols and their associated values. The symbol
table is used in conjunction with the IFTF and IFTT statement

(described later in this section). label 1is the table name, and
symbol-1 is the name of a symbol whose value 1is an absolute number
defined by expression-1l. The symbols defined in a DFTB statement can

be the same as symbols defined by instruction or other pseudo-operation
statements; for example:

A EQU 5
X DFTB (A1), (B,5), (C,3)
X LDA A

There is no conflict between the As and Xs defined within the DFTB and
those defined outside it.

If a DFTB statement has the same label as a previous DFTB statement,
the contents of the second DFTB are appended to that of the first. If

the same symbol occurs in both, the value associated with the second
occurrence replaces that of the first.

» label DFVT (expression-1, expression-2)I[, ...]

Creates a table of locator values and substitution values. The value
table is used in conjunction with the IFVF and IFVT statement

Second Edition 41-6

y

=

J

)

h)

CODE GENERATION PSEUDO-OPERATIONS

(described later in this section). label 1is the table name;
expression-1 is a locator value and expression-2 is a value to be
substituted.

p> ELSE

Causes the inclusion of statements following the ELSE if the result of
a previous IFx statement (any IF with a qualifier appended, such as IFP
or IFVT) 1is false. Statements are included until the matching ENDC
statement is reached. A matching ENDC is one that is at the same
nesting level as its corresponding IFx statement. ELSE statements that
lie within IFx-ENDC pairs nested within the current level are ignored.

p ENDC

Defines the end of a conditional assembly area started by an IFx
statement. Every IFx statement must have a matching ENDC.

p FAIL

Generates an F error in the assembly 1listing. You can use FAIL
statements to indicate a failure in the logic controlling a block of
conditionally assembled code. Embed a FAIL statement between IFx and
ELSE statements or between ELSE and ENDC statements; the FAIL message
is displayed if the wrong block of code is assembled, indicating a
failure in the logic of the IFx condition during assembly.

P GO [TO] label

Causes the assembler to skip all subsequent statements until a
statement having the specified label is found. Assembly continues at
the labeled statement.

The GO statement is typically used in conjunction with a simple or
structured IF statement (described below). The GO statement’s operand
must point forward to the destination label. The destination label
must be within the same MAC-ENDM range as the GO statement. An error
condition exists if the assembler reaches an END, MAC, or ENDM
statement before finding the specified label.

'> [label] IF logical-expression, statement

This form of 1IF is known as a simple IF. It conditionally assembles

statement based on the result of a test. The label is optional.

4-7 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

The operand consists of a logical expression followed by a statement.
If the expression 1is true, the statement is assembled; otherwise the
statement is ignored and the next line is processed. The operand of
the IF statement cannot be continued onto the following line, because
the skip-if-false condition proceeds to the next physical rather than
logical line. Here is an example of a simple IF statement:

VALUE SET 0

IF VALUE.EQ.0, DATA C’SUCCESS’
VALUE SET 1

IF VALUE.EQ.0, DATA C’'FAILURE’

The data constant SUCCESS is generated for the first IF, since VALUE
has been set to zero by the SET statement, and the IF tests true.
FAILURE is not generated, since VALUE has been set to 1; the second IF
therefore tests false and skips the DATA statement.

The six possible logic conditions are:

expression_l.EQ.expression_2 expression_1l equal to
expression_2

expression_1.GE.expression_2 expression_1l greater than or equal
to expression_2

expression_1.GT.expression_2 expression_1 greater than
expression_2

expression_l.LE.expression_2 expression_1 less than or equal
to expression_2

expression_1.LT.expression_2 expression_1l less than
expression_2

expression_l1.NE.expression_2 expression_1 not equal to
expression_2

The periods before and after the condition codes are part of the codes,

and must be entered as shown. Single spaces can be used between
expression_l, the condition code, and expression_2 to improve
readability.

’ [label] 1IFx logical-expression

This form of IF is known as a structured IF. It requires the structure
shown on the following page. The label is optional. The variant x can
have one of the values: M, N, P, 2, TF, TT, VF, or VT; the meanings
of these values are given after the structure description.

Second Edition 4-8

J J

J

3

CODE GENERATION PSEUDO-OPERATIONS

[label] IFx logical-expression

assemble this code if condition is true

[ELSE

. .

assemble this code if condition is false
. . .
ENDC

continue with non-conditional assembly

The ELSE part of the structure can be omitted if, for the false
condition, there 1is no conditional code to assemble. Assembly then
continues with the nonconditional code following the ENDC statement.

For every IFx statement there must be a matching ENDC statement.
IFX-ENDC pairs can be nested within each other. The nesting depth
count is checked even in sections of code that are being skipped
because of a nested IFx-ENDC block.

There are four expression magnitude variants to the IFx statement:

Variant Meaning
IFM expression value is minus (< 0)
IFN expression value is not zero
IFP expression value is plus (> 0)
IFZ expression value is zero

Four additional structured IF statements take actions based on the
presence or absence of symbols and values in tables defined by DFTB and
DFVT statements.

The general form is:

label IFx symbol (for IFTF or IFTT)

label IFx value (for IFVF or IFVT)

4-9 Second Edition

ASSEMBLY L

IFTF

IFTT

IFVFE

IFVT

In all of

ANGUAGE PROGRAMMER’S GUIDE

Search for symbol in the table defined by a DFTB statement
whose name 1is label. (The labels on the DFTB and the IFTF
statements must match.) If the symbol is not found, assemble
the code up to the matching ELSE or ENDC. If the symbol is
found, put its value in assembler attribute #124 and assemble
the code following the matching ELSE or ENDC.

Search for symbol in the table defined by a DFTB statement
whose name is label. (The labels on the DFTB and the IFTT
statements must match.) If the symbol is found, put its
value in assembler attribute #124 and assemble the code up to
the matching ELSE or ENDC. If the symbol is not found,
assemble the code following the matching ELSE or ENDC.

Search for a locator value matching wvalue in the table
defined by a DFVT statement whose name is label. (The labels
on the DFVT and the IFVF statements must match.) If the
value is not found, assemble the code up to the matching ELSE
or ENDC. If the value is found, put its substitution wvalue
in assembler attribute #124 and assemble the code following
the matching ELSE or ENDC.

Search for a locator value matching wvalue in the table
defined by a DFVT statement whose name is label. (The labels
on the DFVT and the IFVF statements must match.) If the
value is found, put its substitution value in assembler
attribute #124 and assemble the code up to the matching ELSE
or ENDC. If the wvalue is not found, assemble the code
following the matching ELSE or ENDC.

the above cases, the assembler can retrieve the value placed

in attribute #124 in a (logically, not necessarily physically) later

instructio
the sequen

SYMTAB
VALTAB

SYMTAB
VAL_1

VALTAB
VAL_2

sets VAL_1l

n or pseudo-operation by coding #124 as its operand. Thus,
ce

DFTB (X,2)
DFVT (1,5)
IFTT X
SET $124
ENDC

IFVT 1
SET $#124
ENDC

to 2 as a result of looking up the symbol X in table SYMTAB,

and sets VAL_2 to 5 as a result of locating the value 1 in VALTAB and

using its

substitution value 5.

Second Edition 4-10

y

J

3

CODE GENERATION PSEUDO-OPERATIONS

SYMBOL DEFINING PSEUDO-OPERATIONS (SD)

Labels used to represent addresses are usually defined when they appear
in the 1label field of an instruction or pseudo-operation statement.
Symbols so defined are given the procedure-relative, link-relative, or
common-relative mode and the value of the location counter at that
location. The EQU, SET and XSET statements make it possible to equate
symbols to any numeric value, including values that lie outside the
range of addresses in a program.

The following symbol-defining pseudo-operations are described in this
section.

Name Function

DYNM Declare stack-relative
data or address constant

EQU Symbol definition
SET Symbol definition
XSET Symbol definition

p DM

The DYNM pseudo-operation is wused to define both the label and the
length of a data or address constant; the constants are allocated in a
stack frame. Refer to Chapter 8 of the System Architecture Reference
Guide for a description of stacks and procedure calls.

One use of DYNM is to provide communication between a calling program
and a called program so that arguments can be passed from one to the
other. DYNM is used in the procedure segment of the called program to
provide space for pointers created by the calling program’s CALL
pseudo-operation. These pointers accommodate the addresses of the
calling program’s arguments. The called program then references the
arguments indirectly through the pointers, as shown in the example on
the following page.

4-11 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

*
* CALLED PROGRAM THAT ADDS TWO NUMBERS
* AND RETURNS THE SUM
*
SEG
SUBR ADD,ECBADD IDENTIFIES ROUTINE FOR LINKER
ADD ARGT REQUIRED FOR ARGUMENT PASSING
LDA QS, * LOAD FIRST NUMBER
ADD RS, * ADD SECOND NUMBER
STA SUM, * STORE SUM
PRTN RETURN TO CALLER
DYNM QS(3) POINTER TO FIRST NUMBER
DYNM RS(3) POINTER TO SECOND NUMBER
DYNM SUM (3) POINTER TO SUM
LINK
ECBADD ECB ADD, ,QS, 3
END

The calling program contains a call sequence such as:

CALL ADD

AP NUM_1, S FIRST NUMBER
AP NUM_2, S SECOND NUMBER
AP TOTAL,SL SUM

in which NUM_1 corresponds positionally to QS in the called program
ADD, NUM_2 corresponds to RS, and TOTAL to SUM. The argument names, as
can be seen in this example, do not need to be the same; the order of
the APs and their corresponding DYNMs, however, must agree, and they
must both be contiguous.

The CALL statement initiates the creation of the pointers in the stack
frame of the called routine and the ARGT instruction in the called

routine completes the process. The called program’s ECB operands
include the label of the first argument pointer (QS) and the number of
arguments expected (3). Refer to the description of the ECB

pseudo-operation in Chapter 6 for a fuller discussion of ECBs.

DYNM also identifies and allocates any other temporary space needed for
data used wholly within the called program, and only for the duration
of the program’s execution. This data is dynamic in that PRIMCS
allocates space for it when the program is called, and deallocates it
when the program returns to its caller.

Each DYNM statement must define the size of the item being allocated.
This is the function of the number in parentheses following the data
name. Argument pointers are always defined as three halfwords long;
other items can be of any length suitable to their purposes. If a
length is not specified, it defaults to one halfword (16 bits).

Second Edition 4-12

J

~

r

b

CODE GENERATION PSEUDO-OPERATIONS

P> EQU, SET, and XSET

These pseudo-operations equate a label with an absolute number. There
are two permissible formats:

Format 1:
EQU
symbol { SET absolute-expression [,symbol = absolute-expression]
XSET
Format 2:
EQU
SET symbol = absolute-expression, ...
XSET

In format 1, the symbol in the label field is equated to the absolute
expression, which may be any expression that is valid in the current
addressing mode. Any symbols used in the expression must already be
defined. The label field is required.

Format 1 can include one or more symbol = value expressions, enabling
several symbols to be defined by one EQU, SET, or XSET statement.

In format 2, equality expressions in the operand field assign numeric
values to symbols. This format allows one or more equality
expressions, separated by commas.

EQU, SET, and XSET all perform the same functions; however, a symbol
defined by EQU cannot be redefined, while a symbol once defined by SET
or XSET can be redefined by subsequent SET or XSET statements without
causing an error message.

EQU statements are normally used outside of conditional assembly and
macro definition blocks; SET and XSET are useful within these blocks
when a label needs to be equated to different values under different
conditions. SET, for example, can be used to increment or decrement a
counter used by an IF/BACK sequence controlling repeated generation of
a block of statements in a macro definition, as shown on the following

page.

4-13 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

MACNAME MAC

COUNT SET 5 INITIALIZE COUNT
REPT SET *

-

code to be repeated

SET COUNT=COUNT-1 DECREMENT COUNT

IFN COUNT REPEAT IF COUNT
BACK REPT NOT ZERO

ENDC

ENDM

The only difference between SET and XSET is that symbols defined by
XSET do not appear in the assembler’s cross reference listing.

LISTING CONTROL PSEUDO-OPERATIONS (LC)

The listing control pseudo-operations are used to control the contents
of the assembler listing. They include the statements in the following
list.

Name Function

EJCT Eject page

LIST Enable listing

LSMD List macro expansions

LSTM List macro expansions with

logic control lines

NLSM Don’t list macro
expansions

NLST Inhibit listing

PCVH Print cross reference

values in hexadecimal

Second Edition 4-14

J

J

r

CODE GENERATION PSEUDO-OPERATIONS

P EgcT

Causes the listing device to eject the page (execute a form feed),
print the current page header and page number, and feed three blank
lines before resuming the listing. This function is operable only with
devices having a mechanical form feed capability, such as a line
printer. Also, if the listing is printed via the SPOOL command, the
SPOOL options used may affect the printing of the page header and page
number. Refer to the description of the SPOOL command in the PRIMOS
Commands Reference Guide for details.

p LisT

Lists all statements except those generated by macro expansions. Since
this is the assembler’s default mode, a LIST statement is not required
unless an NLST statement has previously inhibited listing.

p Lisvp

Lists macro call statements plus macro-generated instructions and data.

p LsT™

Lists macro call statements plus all macro-generated lines, including
logic control lines such as such as SET, GO, IF, and BACK.

P nNLsM

Inhibits listing of statements generated by macro expansion. Only the
macro call is listed. NLSM is overridden if the -EXPLIST command line
option is specified when the assembler is invoked (see Chapter 2).
NLSM also suppresses the listing of local variables (those preceded by
&) in the assembler’s cross reference listing.

P nNIsT

Inhibits listing of all subsequent statements until a LIST statement is
encountered. NLST is overridden if the -EXPLIST command line option is
specified when invoking the assembler (see Chapter 2).

LIST and NLST may be used together in source text to select sections to

be listed. The LSTM, LSMD, and NLSM statements provide control of
listing for macro definitions.

4-15 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

p rpcvH

Prints symbol values
octal.

Second Edition

in the cross reference in hexadecimal instead of

4-16

4 J

J J

b

5
Constant Definition
Pseudo-Operations

This chapter describes a group of pseudo-operations that create static
data and data areas of various kinds that the machine instructions will
use for computation and data storage. This group includes four classes
of pseudo-operations that perform address definition (AD), data
definition (DD), literal control (LT), and storage allocation (SA)
functions.

Two kinds of static data are discussed in this chapter: address
constants and data constants. Address constants are used primarily for

indirect addressing. (See TYPES OF ADDRESSING in Chapters 8 and 9 of
this guide, and the System Architecture Reference Guide for fuller
discussions of addressing.) Data constants are numeric or alphanumeric

entities that the program uses for computation and display purposes.
These are described in detail later in this chapter.

A third kind of data, the 1literal constant, is not generated by a
pseudo-operation, but by being used in the operand field of a machine
instruction. Refer to Operand Field in Chapter 3 for a description of
literal constant formats.

There are two literal-related pseudo-operations, whose function is to
determine where in the assembled program the constants will be stored;
that is, whether they will be stored in the procedure segment or in the
linkage segment. These are described later in this chapter.

One other group of pseudo-operations reserves a specified number of
locations .for such things as input and output buffers and temporary
storage areas. These do not load anything into the areas; they simply
reserve space and assign the label, if any, to the space.

5-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

ADDRESS DEFINITION PSEUDO-OPERATIONS (AD)

This group of pseudo-operations creates address constants that
statements can use for indirect addressing, subroutine argument
passing, and temporary storage of addresses.

Name Function

AP Argument pointer template
DAC Local address definition

Ip Indirect pointer
XAC External address definition

> [label] AP address-expression [,modifier]

The AP pseudo-operation generates a template in the form used by the
Procedure Call instruction (PCL) to create indirect pointers for
subroutine argument passing via the subroutine’s stack frame.
address—expression is an argument label, written in any V-mode or
I-mode memory reference format except indexed.

modifier controls the storage of address—expression as follows:

S Set argument store bit.

SL Set argument store bit. Last argument.

*S Set argument store bit. Argument is indirect.

*SL Set argument store bit. Argument is indirect
and last.

* Intermediate indirect argument. Do not store.

Indirect argument pointers and argument templates are described in
detail in Chapter 8 of the System Architecture Reference Guide.

’ [label] DAC address-expression

The DAC pseudo-operation generates a 16-bit address constant,
containing the address represented by address—-expression. An
instruction can use the address constant as an indirect pointer to a
location within the same segment as the instruction. When used for
indirection, the DAC operand must be direct and the referencing
instruction must be in short (16-bit) form; that is, its operation
code must include a terminating # sign. Its operand can be indirect or
indirect indexed.

Second Edition 5-2

J

J

N

CONSTANT DEFINITION PSEUDO-OPERATIONS

LDA# ADCON, * or
LDA# ADCON, *X

ADCON DAC TABLE
TABLE DEC 0
DEC 1

The address expression (TABLE in the above example) is the label of a
location within the segment. When a DAC defines an indirect pointer,
its argument must be direct, since V mode and I mode allow only one
level of indirection, and that level is used in the referencing
instruction. Refer to the discussion of indirect addressing in Chapter
8 of this guide.

If a DAC simply defines a storage location for an address, that address
can be direct or indirect in both V mode and I mode. In V mode only,
the address can also be indirect post-indexed by X.

The DAC statement can also provide storage space in a subroutine called
by a JST instruction (in V mode only). In this usage it allocates
storage for the address to which control 1is to return after the
subroutine completes execution. (Refer to the description of the
jump-and-store instructions in Chapter 8.) It must appear immediately
before the first executable instruction of the subroutine, in the
following form:

label DAC **

In this case, label is required, and is the label used in the operand
field of the JST instruction. This subroutine calling technique is
valid only in nonshared segments; that is, the program must be linked
by the SEG 1loader, or, if it is linked by BIND, the procedure segment
must be designated as impure. (See the description of the SEG or SEGR
pseudo-operation in Chapter 4.)

’ [label] IP address-—-expression

The IP pseudo-operation generates a 32-bit V-mode or I-mode indirect
pointer containing the address represented by address-expression. It
is functionally the same as the DAC in indirect addressing, but it can
refer to locations outside the referencing segment. address—expression
can be any of the following: procedure relative, linkage relative,
common, or external. This means that address-expression can contain a
label defined when the assembler’s location counter mode is
procedure-relative, linkage-relative, or common-relative, or when the

5-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

label is defined in an EXT pseudo-operation. The linker supplies the
value of the pointer.

IPs, unlike DACs, should not appear in the procedure segment, but in
the linkage segment (that is, following a LINK pseudo-operation).
Otherwise, an error will result during linking of the assembled
program.

P> [(label] XAC symbol

The XAC pseudo-operation generates a 16-bit pointer containing the
address of symbol, which is defined in an external module. The symbol
name may be the same as a local symbol without conflict. XAC is like
DAC except that it references external symbols. The address of the
external symbol is supplied by the linker.

Because the pointer is only 16 bits long, the module containing the

definition of the external symbol must be linked into the same segment
as the referencing module.

DATA DEFINITION PSEUDO-OPERATIONS (DD)

This group of pseudo-operations allocates space for and initializes
data constants to known starting values. Data can appear in any
program segment. However, it is important to note that no data that
the program will modify (by storing into it or performing arithmetic,
logical, or character operations on it) should ever appear in a
procedure segment, which in V mode and I mode is considered to be a
pure segment. No assembler or linker error messages are generated if
this rule is violated, but a run-time error (access viclation) will
occur if the program is linked with BIND and invoked by the RESUME
command.

For coding convenience, the assembler accepts a variety of data
declaration formats. Simple coding conventions allow the programmer to
use decimal, octal, hexadecimal, and binary integers, decimal floating
point, and character constants. The assembler interprets the notation
and generates one or more data elements in the proper internal binary
format.

Second Edition 5-4

J

J

r
-

> 4

3

CONSTANT DEFINITION PSEUDO-OPERATIONS

The following pseudo-operations define data constants.

Name Function

BCI Define character constant (space £ill)
BCZ Define character constant (null fill)
DATA Define numeric or character constant
DEC Define numeric constant

HEX Define hexadecimal integer constant
OCT Define octal integer constant

VED Define variable fields

[label] BCI ’string’
[label] BCI n,string
[label] BCZ ’‘string’

Loads character strings by packing the specified characters two per
halfword, starting with the leftmost 8 bits. Assembled halfwords are
loaded starting at the current location, and label is assigned the
current location’s value.

If the n, is omitted, the length of the string within the delimiter
characters determines the number of halfwords to allocate. 1In a BCI of
this form, the string must begin and end with a pair of nonnumeric
characters which do not appear in the string itself. A string can be
up to 72 characters long.

The single quote 1is the typical delimiter, but if it appears in the
string, then some other character such as a slash (/) or double quote
(") can replace it:

CONS1 BCI 'PRIME COMPUTER’
CONS2 BCZ /YOU’RE OUT!/

The BCI packs 14 characters into 7 halfwords whose contents are PR, IM,
E<space>, CO, MP, UT, and ER. The BCZ packs 11 characters into 6
halfwords, the last of which is padded on the right with a null.

Both BCI and BCZ pad on the right when the string contains an odd

number of characters. BCI pads with a space character (7240), while
BCZ pads with a null character (’000).

5-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

When the n, is included (valid only for BCI), it defines the number of
halfwords to allocate. The constant can consist of any number of
characters up to twice the value of n. If the constant is fewer than
2 * n characters long, the assembler pads the n unused halfwords on the
right with the appropriate number of spaces:

CONS3 BCI 3,HI
CONS4 BCI 20,

The first BCI loads HI into the first of three halfwords, padding the
second and third with spaces. The second BCI loads 20 halfwords with
spaces; this technique is useful for reserving a buffer initialized to
spaces. Note that when n, is present, no delimiters are used around
the string.

’ [label] DATA constant (s)

The DATA pseudo-operation can be used in a variety of ways to define
almost any form of constant or group of constants. Data items are
stored starting at the current location, and label is assigned the
value of the current location.

Character Constants: The DATA statement can define one or more
character constants in one of the following forms:

[label] DATA j’string’
[label] DATA n(j’string’)

where j specifies the justification within the allocated halfwords if
the length of string is odd; 3 is either C or R, for left or right
justification, respectively. If C is used, string can be up to 32
characters long; if its length is odd, it is padded on the right with
a space. If R is used, string can be only one character; the leftmost
byte is null (7000).

n specifies the number of occurrences of the constant to generate. If
n is used, the string specification must be enclosed in parentheses.

The only valid delimiter in a string-defining DATA statement is the
single quote. Therefore, a DATA statement cannot define a string

containing a single quote; use the BCI statement as shown previously.

In both of the above forms, label is assigned the memory location of
the first halfword allocated for the string.

Second Edition 5-6

J

J J

D

CONSTANT DEFINITION PSEUDO-OPERATIONS

A group of character constants (not all the same) can be generated by a
DATA statement of the following form:

[label] DATA constant-1,constant-2,...

where constant-n can assume either of the forms shown in the DATA
statement descriptions previously shown. The following is a valid DATA
statement:

CONS5 DATA C’HI’,R’X’,3(C’HELLO’)

The generated constants consist of one occurrence of HI, one occurrence
of <null>X, and three occurrences of HELLO<space>.

Integer Constants: The DATA statement can generate decimal, octal,
hexadecimal, and binary integer constants in either 16-bit or 32-bit
form. The form of the statement is:

number
[label] DATA [k] +number [L]
-number

k defines the base of the number to its right: if it is omitted, the
base is decimal; a single quote (/) indicates octal; a dollar sign
($) indicates hexadecimal; and a percent sign (%) indicates binary.
In all cases, the digits following k must be valid for the base denoted
by k. The value of number can be in the range -2**15 to +2**15 - 1,
inclusive; that is, it must be a number that can be represented by 15
bits plus a sign bit.

When L follows the number, it indicates that a 32-bit (double
precision) constant is to be generated. This enables values of number
in the range -2**31 to +2**31 - 1, inclusive —-- numbers that can be
represented by 31 bits plus a sign bit. label is assigned the address
of the leftmost halfword.

Whether the L is wused or not, no error message is generated if the
limiting values are exceeded; the assembler discards the high-order
bits.

The characters O, X, and B can be used in place of the symbols
described above to designate the base of a constant as octal,
hexadecimal, and binary, respectively. When these designations are
used, the value specifications must be enclosed in single quotes (see
the examples below).

5-7 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

Integer constants are always right-justified in their storage
locations. If there are fewer than 16 significant bits in a constant
declared with the L option, they are stored in the rightmost halfword,
and the leftmost halfword is zero-filled. The partial assembly listing
shown below illustrates how integer constants can be generated.

000435> 000024 (0012) co8 DATA 20 decimal
000436> 000000 (0013) DATA 20L

000437> 000024

000440> 177760 (0014) DATA 0O’-20' octal
000441> 000000 (0015) DATA '20L

000442> 000020

000443> 000040 (0016) DATA X'20’ hex
000444> 177777 (0017) DATA $-20L

000445> 177740

000446> 000064 (0018) DATA B’110100’ binary
000447> 177777 (0019) DATA 3%-110100L
000450> 177714

Fixed Point Constants and Scaling: Noninteger decimal constants can be
specified by using a binary scaling technique. Binary scaling
indicates the location of an implied binary point after a specified bit
in the binary representation of the decimal constant. It is used in a
DATA statement of the following form:

[label] DATA nBm

where n is a decimal number that may include a decimal point, B
represents one to four occurrences of the letter B, and m is the scale
factor.

The following examples show some data declarations and the resulting
octal and binary representations.

Constant Octal Representation Bit Pattern
123B15 000173 0000000001111011.
123.5BB15 000173 100000 0000000001111011.12000000000000000
123B7 075400 01111011.00000000
123.5B7 075600 01111011.10000000
0.5B0 040000 0.100000000000000

In these examples, the B indicates that scaling is in effect, and the
number following it (the scale factor) specifies the bit position of

the implied binary point. The first bit of the binary string is the
sign bit.
Second Edition 5-8

) J

J

CONSTANT DEFINITION PSEUDO-OPERATIONS

Single, double, triple, and quadruple precision can be specified by
using 1, 2, 3, or 4 Bs, respectively, to generate 16, 32, 48, and 64
bit binary equivalents of the decimal numbers.

The assembler generates an error message if the number of bits to the
left of the binary point is not sufficient to contain the integer part
of the constant. A scaling factor greater than the number of available
bits (for example, B18) results in right-end truncation of the
generated constant (123B18 results in 000017 octal) with no assembler
error indication. The notation BB18 would supply sufficient bits for
the truncated portion to be carried over into the second 16 bits.

Floating Point Constants: The DATA statement 1is wused to generate
single (32-bit), double (64-bit), and quad (128-bit) precision floating
point constants. The three forms are shown below.

[label] DATA number [E[-]exp] single precision
[label] DATA numberD [-] exp double precision
[label] DATA numberQ [-]exp quad precision

For single precision floating point numbers, either a decimal point or
the E notation must be present. They can also be used together. If
the E notation is absent, number must include a decimal point. Whether
to use a decimal point when the E notation is present depends on how
the number and its exponent are represented. Thus, the single
precision floating point integer 123 can be represented as 123.,
.123E3, 1.23E2, 12.3E1, 123E0, 1230.E-1, and so on. Double and quad
precision numbers must always use the D and Q notations, respectively.

For a description of how floating point numbers are represented in the
floating point registers and in memory, refer to Chapter 6 of the
System Architecture Reference Guide.

> [label] DEC numeric-constant(,...]

The DEC pseudo-operation defines numeric constants. It operates in
precisely the same way as the DATA statement with numeric operands, and
all but one of the numeric formats accepted by the DATA statement can
be used with DEC. The exception is the multiple-occurrence form of
cperand, n(number).

P> [label] HEX hexadecimal-constant[L][,...]

The HEX pseudo-operation defines hexadecimal integers by converting the
hexadecimal representation in the operand to 16-bit integer values.
The effect is the same as using a DATA pseudo-operation with a $number
operand.

5-9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

In the absence of the L qualifier, the assembler generates a 16-bit
constant whose value can range between -2**15 and +2**15 - 1,
inclusive. This corresponds to hexadecimal values between -8000 and
+7FFF. If the L qualifier is present, a 32-bit constant is generated.
Its value can be between -2**31 and +2**31 - 1 (hexadecimal -80000000
and +7FFFFFFF), inclusive. In either case, no error message 1is
generated if these values are exceeded; the assembler discards the
high-order bits.

'P [label] OCT octal-constant[L][,...]

The OCT pseudo-operations defines octal integers by converting the
octal representation in the operand to 16-bit integer values. The
effect is the same as using a DATA pseudo-operation with a ’‘number
operand.

In the absence of the L qualifier, the assembler generates a 16-bit
constant whose value can range between -2**15 and +2**15 - 1,
inclusive. This corresponds to octal values between -100000 and
+77777. 1If the L qualifier is present, a 32-bit constant is generated.
Its value can be between -2**31 and +2**31 - 1 (octal -20000000000 and
+17777777777), inclusive. In either case, no error message is
generated if these values are exceeded; the assembler discards the
high-order bits.

' [label] VFD size-1,value-1[,size-2,value-2]...

The VFD pseudo-operation permits a 16-bit halfword to be formed with
subfields of varying length. In the operand pairs, size-n gives the
subfield size in bits, and value-n gives the value. size is expressed
as a decimal integer. value can be specified as decimal, octal,
hexadecimal, binary, or character, specified as for a DATA statement.
Thus, the following is a valid VFD statement:

[label] VFD 3,6,8,R"A",5,712

The first size/value pair represents the most signficant (leftmost)
subfield; subsequent size/value pairs load less significant subfields
of the 16-bit halfword. For any subfield, if the binary equivalent of
its value will not fit into its specified subfield size, the leftmost
overflow bits are dropped. No error message is generated. If the
entire halfword is not specified, the 1least significant bits are
zero-filled.

An error message results if the sum of the subfield sizes exceeds 16
bits.

Second Edition 5-10

4 D

J

YD

CONSTANT DEFINITION PSEUDO-OPERATIONS

LITERAL CONTROL PSEUDO-OPERATIONS (LT)

This group of pseudo-operations governs the placement of literals in
the assembled program. See also the description of the END
pseudo-operation, described under Assembly Control Pseudo-Operations in
Chapter 4.

Name Function
FIN Insert literals
RLIT Optimize literals

P> [label] FIN

The FIN pseudo-operation controls the placement of literal pools. All
literals defined since an RLIT statement, the start of the program, or
the last FIN statement, are assembled into a literal pool starting at
the current location. label takes the address and mode of this
location. Processing of subsequent statements begins at the 1location
following the last literal in the current pool.

By using FIN, you can distribute literals (especially those defined in
short form instructions) throughout the procedure segment of a program
to keep them within range of their defining instructions, thus reducing
the number of out-of-range indirect address pointers that the loader

must create to access them. (The direct addressing range of short form
instructions is from -224 to +255 locations relative to the
instruction’s location. The linker generates indirect pointers for

addresses outside this range.)

Each time a FIN is encountered, the assembler closes one literal pool
and opens a new one. This means that two identically-valued literals
defined before a FIN statement are allocated at the same memory
address, while two such literals, one defined before and the other
after a FIN statement, are allocated different memory addresses.

Be careful, when using the FIN statement, that you end the preceding
executable code with a control transfer instruction such as a jump or
branch; otherwise the program will attempt to interpret the data in
the literal pool as instructions, and will very 1likely produce a
run-time error condition.

P RLIT

The RLIT pseudo-operation, if used, must appear immediately after the
initial SEG or SEGR statement in a program. In the absence of an RLIT
statement, all literals are placed in the linkage segment.

5-11 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

The presence of an RLIT statement causes all literals to be placed in
the procedure segment. The FIN statement controls their location
within the procedure segment as described in the previous section.

RLIT and FIN statements interact in the following way.
If RLIT is specified and a FIN occurs while in linkage-relative

mode, the FIN will act as if the following sequence had been coded
(only the FIN is actually generated):

PROC switch to procedure-relative mode
FIN put literals in the procedure segment
LINK restore the linkage-relative mode

Correspondingly, if RLIT is not specified and a FIN occurs while in
procedure-relative mode, the FIN will act as if the following
sequence had been coded (only the FIN is actually generated):

LINK switch to linkage-relative mode
FIN put literals in the linkage segment
PROC restore the procedure-relative mode

STORAGE ALLOCATION PSEUDO-OPERATIONS (SA)

This group of pseudo-operations allocates storage without (except in
one case) assigning initial values to the storage locations. They can
be thought of as simply reserving a certain amount of space for future
data storage. They are typically used to reserve buffer space for
input and output operations.

Your program should never rely on the initial contents of uninitialized
memory. Any data wusing uninitialized storage should be put there by
the program itself, either by reading into it from an external medium
or by executing instructions which explicitly store into it.

The following pseudo-operations constitute the storage allocation
statements.

Name Function

BSS Allocate block starting with symbol

BES Allocate block ending with symbol

BSZ Allocate block and set to zeroes

COMM FORTRAN (FTN and F77) compatible COMMON
Second Edition 5-12

2 J

J

Y

3

CONSTANT DEFINITION PSEUDO-OPERATIONS

BSS
> [label] BES absolute-expression
BSZ

Each of these pseudo-operations allocates a block of halfwords of the
size specified by absolute-expression, starting at the current location
count. If there is a 1label, BSS and BSZ assign it to the first
halfword of the block; BES assigns it to the location following the
last halfword of the block. BSZ, in addition to allocating space for
the block, initializes the block to all zero bits.

Since storage allocated by these statements is almost invariably meant
to be written into (that is, modified by the program), the statements
should never be coded in a pure procedure segment. They should appear
either in a linkage segment or in a procedure segment that is
designated as impure (see the description of the SEG or SEGR
pseudo-operation in Chapter 4).

> [label] COMM symbol [(absolute-expression)]

Defines FORTRAN-compatible named COMMON areas. These areas are
allocated by the linker. label assigns a name to the block as a whole,
while symbol specifies named variables or arrays within the block.
Additional COMM statements with the same block name are treated as
continuations of the block. symbol alone reserves a single location;
the optional (absolute-expression) reserves a number of locations equal
to its value. The loader creates in the linkage segment a 32-bit
indirect pointer which points to the common area.

The COMM statement must appear before any statement that generates
code, either in the procedure segment or in the linkage segment. It
should immediately follow the SEG or SEGR statement, or the RLIT
statement, if there is one.

5-13 Second Edition

6
Loading and Linking
Pseudo-Operations

The pseudo-operations described in this chapter control the actions of
the linker during program linking and provide the mechanism by which
separately assembled or compiled programs can be identified and called
from the current program.

LOADER CONTROL PSEUDO-OPERATIONS (1.0)

The loader control pseudo-operations provide control information for
the SEG loader or BIND linker. Addressing mode control
pseudo-operations (D64V, D32I) control the assembler memory reference
instruction processing as well as loader address resolution mode. Mode
commands entered during loading set only the loader’s current mode, and
are overridden by mode control pseudo-operations in the program.

Incompatible instructions such as a 64V-mode instruction in 32I mode
are flagged by the assembler. The addressing mode of the program is
determined by the SEG or SEGR pseudo-operation, described in Chapter 4.

The DUII, LIR and CENT statements simplify the preparation of 1library

packages that automatically load instruction simulation modules
appropriate to the machine in which the code is to be executed.

6-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

The following pseudo-operations provide the loader control functions.

Name Function

CENT Conditional entry

D64V Use 64V addressing mode
D32I Use 321 addressing mode
DUII Define UII

ELM Enter loader mode

LIR Load if required

P> CENT symbol

Provides a conditional ENT capability. The loader will load a module
containing a CENT only if something else in the module (such as an LIR)
directs it to load the module. This is true even if the module would
have been loaded by virtue of a match between symbol and an unresolved
external reference.

Typically, a module containing a CENT statement will be part of a
library.

P Dpeav

The D64V pseudo-operation directs the assembler and the linker to wuse
64V address resolution for the following instructions, even though a
SEGR pseudo-operation appears in the program. V-mode assembly
continues until a D32I statement is encountered, or to the end of the
program.

It is important to emphasize that this pseudo-operation affects only
the assembler and the linker; a corresponding machine instruction,

E64V, must accompany it to cause the execution mode to switch from I
mode to V mode. D64V/E64V sequence is commonly coded in the form

D64V:E64V

Second Edition 6-2

J

J

LOADING AND LINKING PSEUDO-OPERATIONS

p p32I

The D32I pseudo-operation directs the assembler and the loader to use
321 address resolution, even though a SEG pseudo-operation appears in
the program. I-mode assembly continues until a D64V statement is
encountered, or to the end of the program.

It is important to emphasize that this pseudo-operation affects only
the assembler and the linker; a corresponding machine instruction,
E32I, must accompany it to cause the execution mode to switch from V
mode to I mode. D32I/E32I sequence is commonly coded in the form

D32I:E32I

> DUII absolute-expression-1, absolute-expression-2

The DUII pseudo-operation directs the loading of an
unimplemented-instruction (UII) emulation package. absolute
expression-1 is a bit mask defining instruction sets that the UII
package emulates, and absolute-expression-2 is a bit mask defining
hardware instruction sets that must be present to execute the UII
package.

Bit number Meaning

1-9 Must be 0

10 Prime 500

11 Prime 400

12 Undefined

13 Double Precision Floating Point
14 Single Precision Floating Point
15 Prime 300 Only

16 High Speed Arithmetic

p ELM

The ELM pseudo-operation directs the 1loader to generate an enter
addressing mode instruction in the current loader addressing mode at
the current counter.

6-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

’ LIR absolute-expression

The LIR pseudo-operation controls library program loading. The program
will be loaded if any of the instruction groups specified have been
used in previously loaded code. absolute-expression is a bit mask,
defining instruction groups that are to cause loading. Bit assignments
are the same as for the DUII statement.

PROGRAM LINKING PSEUDO-OPERATIONS (PL)

This group of pseudo-operations governs the interaction between the
assembler and the loader in resolving address references between main
programs and external subroutines.

Name Function

CALL External subroutine call
DYNT Direct entrance call

ECB Define entry control block
EXT Flag external reference

SUBR, ENT Define entry point

SYML Allow long (B-character) external names

P> (label] CALL symbol

The CALL pseudo-operation generates a PCL instruction that transfers
control to a location in an external program or subroutine. It
combines the functions of the PCL instruction, an EXT pseudo-operation,
and an IP pseudo-operation in that it identifies the name given in
symbol as an external label which the linker will use to resolve the
indirect pointer. Thus, CALL eliminates the need for an explicit EXT
statement to identify an external symbol, and for an explicit IP
statement to provide an indirect pointer, as would be required if the
PCL instruction itself were coded. Figure 12-1 in Chapter 12 shows the
differences in calling subroutines by the CALL method and the PCL
method.

P DYNT entry-point-name

The DYNT pseudo-operation identifies a direct entrance point into a

subroutine library. For entry points in Prime-supplied system
.libraries, this statement is unnecessary; it is used only to define
entry points in wuser-created 1libraries. Its effect is to store the
Second Edition 6-4

J

LOADING AND LINKING PSEUDO-OPERATIONS

entry point name in the program, where it will be resolved into the
address of the entry point by the dynamic linking mechanism. Volume I
of the Advanced Programmer’s Guide describes DYNTs and the dynamic
linking mechanism in detail.

» [label] ECB entry-point, [link-base], [displacement],
[n-arguments], [stack-size], [keys]

The ECB pseudo-operation generates an entry control block by which
calling and called programs can communicate with each other. It must
appear in the 1link frame. label is the name of the ECB, by which the
program containing the ECB is called by a CALL statement in another
program. If this program is to be <called from other than command
level, it must also have a SUBR or ENT statement (described later in
this section) whose operand is the ECB label.

The operand functions are described below.

Operand Function
entry-point Entry point in the procedure segment of the program.

It is the label of the first executable instruction
in the program.

link-base This operand is not currently used. The comma
following it, however, must be included if more
operands follow. The link base defaults to ’-400
("177400) .

displacement Used only if there are arguments to be passed to the
this program when it is called. It is the label of
an argument pointer defined in this program in the
operand field of a DYNM pseudo-operation (described
in Chapter 4). If only one argument 1is to be
passed, it is the label of that argument’s pointer.
If more than one argument is to be passed, it is the
label of the first of these arguments’ pointers.
All of the argument pointers must appear as
consecutive arguments in one or more consecutive

DYNM statements. (Other DYNM statements can be used
to define dynamic storage that is not related to
argument passing; these DYNMs must not intervene

between those used to pass arguments.)
n-arguments Number of arguments expected; this number must

agree with the number of DYNM statements that define
the argument pointers. The default is zero.

6~-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'’S GUIDE

stack-size Initial stack frame size. The default is sum of the
sizes specified in all DYNM statements, plus 10
(decimal) words for stack frame overhead.

keys CPU keys for procedure. The default is 64V
addressing mode (714000) if the SEG pseudo-operation
was used, or 32I addressing mode (’10000) if the
SEGR pseudo-operation was used. Keys are discussed
in detail in Chapter 5 of the System Architecture
Reference Guide.

If the default value for any operand is desired, the operand can be
omitted, leaving only its trailing comma. Any string of trailing
commas can be omitted.

Note

Any program that is invoked from command level (that is, by the
SEG or RESUME command) is entered from SEG or RESUME via a PCL
instruction; the invoked program must therefore contain a
labeled ECB and must have the ECB label as the operand of its
END statement. It need not have an ENT or SUBR statement
because SEG and RESUME provide a dummy entry point name to a
program called in this way.

P> [label] EXT symbol

Identifies variables defined in external programs. The name appearing
in the operand of this statement is flagged as an external reference.
Whenever other statements in the main program reference one of these
names, a special block of object text is generated that notifies the
linker to supply the appropriate address. The assembler fills the
address fields with zeros.

An EXT statement is required if calls are made to an external program
through a PCL instruction in this program; it is not needed if a call
is made through a CALL pseudo-operation, since CALL implicitly performs
the processing of an EXT statement in addition to generating the PCL
instruction.

Names defined by symbol must be unique in the first 6 characters (8

characters if a SYML pseudo-operation appears in the program) and
should not appear as a label within the program.

Second Edition 6-6

J

LOADING AND LINKING PSEUDO-OPERATIONS

[label] SUBR symbol-1[, symbol-2]
[label] ENT symbol-1[, symbol-2]

The SUBR or ENT pseudo-operation matches an entry point in a called
program to the label appearing in the operand field of a CALL, XAC or
EXT statement 1in a calling program. SUBR and ENT are identical in
effect.

symbol-1 and symbol-2 supply the names of the entry-point and the ECB
of the <called program. The details of how this is done and when and
how to use the optional symbol-2 are discussed in Chapter 12.

P svML

The SYML pseudo-operation allows the declaration of external names up
to eight characters 1long. In the absence of this statement, external
names are limited to six characters (this is a linker restriction).

This statement, if used, must follow SEG or SEGR and precede any
generated code.

6-7 Second Edition

7
Macro Definition
Pseudo-Operations

This chapter describes a group of pseudo-operations used in coding
macro definition blocks. A macro definition block consists of a group
of statements -- instructions and pseudo-operations -- that can be
called repeatedly from anywhere outside the block; they are useful for
saving coding time and effort when the same sequence of statements must
be used more than once in a program.

The following pseudo-operations are described in this chapter:

Name Description

ENDM End a macro definition

MAC Begin a macro definition
SAY Print a message
SCT Select code within a macro

SCTL Select code from comparison list

See also the descriptions of the conditional assembly pseudo-operations
given in Chapter 4. Additional information on the definition and use
of macros is given in Chapter 11.

7-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'’S GUIDE A\

MACRO DEFINITION BLOCK ‘

A macro definition block contains, in addition to ordinary statements,
pseudo-operations that are unique to macro definitions; they define
the beginning and end of the block, and provide a degree of logic in
the inclusion or rejection of subgroups of statements within the
definition block. These pseudo-operations are described in this
chapter; some other conditional assembly statements, which can be used
within or outside of macro definitions, are described in Chapter 4.

A macro definition always has a name; the macro is called by coding

that name in the operation field of an assembler statement. A
statement having a macro name in its operation field is known as a
macro call. If the macro expects arguments, argument values are coded

in the operand field of the call. These values are substituted for

argument references (strings of the form <number>) wherever they appear

in the macro definition block. For example, if it were frequently ‘.\
necessary in a program to transfer one halfword of data from one memory

location to another, the following macro definition could be used.

TRANSFER MAC
LDA <1>
STA <2>
ENDM

Then, from anywhere else in the program (including from within another ‘
macro definition block), the macro can be called by a statement such as

TRANSFER LOC_1,LOC_2

where LOC_1 and LOC_2 are labels on the source and destination data

items within the program. The integers enclosed in angle brackets are

the argument references. The numbers correspond to the positions of

the arguments in the macro call’s operand field. During assembly they ‘\
are replaced by the argument values specified in the call. Thus, in

the example, <1> is replaced by LOC_1l and <2> is replaced by LOC_2.

The code for the call and the generated statements would appear in the
following form on the assembly listing (if LSTM is in effect —- see
Chapter 4).

TRANSFER LOC_1,LOC_2
LDA LocC_1
STA LOC_2

Optional dummy words and argument identifiers can be used to improve
readability and increase flexibility of argument positioning. These
are described in Chapter 11. ,.~'

Second Edition 7-2 ‘\

D

D

MACRO DEFINITION PSEUDO-OPERATIONS

A macro definition block must appear before any call to that macro.
Macro definition blocks can contain calls to other macros, provided the
called macro’s definition block appears before the call to it. A macro
definition cannot, however, contain another macro definition; that is,
a MAC pseudo-operation cannot appear between another MAC and an ENDM
statement.

MACRO DEFINITION PSEUDO-OPERATIONS (MD)

P> ENDM

The ENDM pseudo-operation terminates a macro definition. ENDM must be
the last statement in a macro definition.

.P label MAC [dummy-word, ...] [argument-identifier,...]

The MAC pseudo-operation begins the definition of the macro. Its name
is given in the label field. The name is formed in the same way as the
label on an instruction or pseudo-operation. Following the MAC
statement are statements that make up the macro definition. The
definition ends with an ENDM statement.

’ [labell SAY ASCII-expression

The SAY pseudo-operation defines a message which is printed starting in
column 1 of the listing. Normally, the SAY message is wused within a
macro to generate error comments or other messages. An example of how
a SAY message appears in an assembly listing is shown in Figure 7-1.
Any argument references appearing within the message are replaced,
before the message is generated, by corresponding values given in the
macro call.

If a 1listing device 1is assigned, SAY statements generate output
regardless of the status of the listing options. The PMA invocation
command assigns the 1listing device and some 1listing options, as
described in Chapter 2. Macro listing options are defined by listing
control pseudo-operations within a program; these are described in
Chapter 4.

.b— [label] SCT absolute-expression

The SCT pseudo-operation assembles selected code groups based on the
value of absolute-expression. The expression must be a constant or an
expression that can be evaluated as a single-precision number. It can
also be an argument reference (<n>). The argument value may be

7-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

positive or negative, with a range between -4000 and +4000. This value
determines which code groups are asembled.

No other SCT statements may appear within the control range; SCT
statements cannot be nested. It is possible, however, to call another
macro containing an SCT from within an SCT range.

Code Groups: Code under the control of an SCT statement must be in
groups delimited by one of four types of marker lines. Marker lines
have a percent symbol (%) in column 1, either by itself or followed by
a second character. Marker line functions are described below.

Marker Function

o

Code group delimiter line. Increments code group count.
If the count matches the value of the SCT argument,
assemble from this marker to the next % marker or to the %/
marker, whichever occurs first.

o
=

If any statements in the code group containing this marker
were assembled, continue assembly from this marker to the
next marker of any kind; then skip to the %/ marker if not
already there. %1 markers increment the code group count.

%2 If no statements between the SCT and this marker have been
assembled, assemble from this marker to the next marker of
any kind; then skip to the %/ marker if not already there.
%2 markers increment the code group count.

%/ End of control range for the current SCT.

The %2 marker is useful to identify a section of code that 1is to be
assembled if the argument value of the SCT statement is out of range.
When used in this way, it should be used only as the last code group in
an SCT range.

Function of the Expression Value: The value of the absolute expression
is essentially a counter pointing to a particular code group within the
range of the SCT statement. In the following example there are five
code groups, each consisting of one instruction. The first code group
is considered code group zero, and begins with the SCT statement; it
is not preceded by a % marker.

Second Edition 7-4

A J

J

Yy

3

MACRO DEFINITION PSEUDO-OPERATIONS

LOAD MAC

SCT <1>

LDA LOC_0 code group 0
%

LDA LOC_1 code group 1
%

LDA LOC_2 code group 2
%

LDA LOC_3 code group 3
%

LDA LOC_4 code group 4
%2

SAY ARGUMENT ERROR IN CALL TO ’LOAD’ MACRO
%/
ENDM

A call to the LOAD macro with a numeric value between 0 and 4 as its
first argument substitutes that value for the <1> in the SCT statement,
and causes the generation of the corresponding code group. An argument
value of 5 or greater causes the error message to be displayed. Figure
7-1 shows an assembly using an SCT statement.

A general description of assembler action for various argument values
is given below.

Argument Value Assembler Action

0 Assemble from the SCT statement to the first %
marker; then skip to the %/ line.

1 Skip to the first % marker; assemble from there
to the second % marker; then skip to the %/
marker.

n Skip to the nth % marker, if any. Assemble from

there to marker n+l; then skip to the %/ marker.
If there is no nth % marker, proceed as for -n.

-n Skip to a %2 marker, if any, and assemble from
there to the next % marker; then skip to the %/
line. If there is no %2 marker, skip to the %/
line.

7-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

’ [label] SCTL absolute-expression, argument-1, [argument-2, ...]

The SCTL pseudo-operation assembles selected code groups. The result
of a comparison between absolute—-expression and the items in the
argument list controls the selection of the code group.
absolute-expression and each item in the argument 1list must be an
expression that can be evaluated as a single-precision number. Any of
them can be (or contain) an argument reference (<n>).

The argument value may be positive or negative, with a range between
-32768 and +32767. This value determines which code group is

assembled. Code groups are defined as for the SCT statement, described
above.

No other SCTL statements may appear within the control range; SCTL
statements cannot be nested. It is possible, however, to call another
macro containing an SCTL from within an SCTL area.

Expression Comparison: The ordinal position in the argument 1list of
the argument that equals absolute-expression determines which code
group is selected.

Expression Comparison Selection
absolute—expression = argument-1 code group 0
absolute-expression = argument-2 code group 1
absolute-expression = argument-n code group n-1
no match same as SCT -n

The SCTL statement functions like the SCT statement, but uses argument
values rather than code group numbers to select code groups:

LOAD MAC
SCTL <1>, 15, 27, -3, 250, -99
LDA LOC_0

%
LDA LOC_1
%
LDA LOC_2
%
LDA LOC_3
%
LDA LOC_4
%2
SAY ARGUMENT ERROR IN CALL TO ’LOAD’ MACRO
%/
ENDM
Second Edition 71-6

J

3

MACRO DEFINITION PSEUDO-OPERATIONS

The macro expects calls whose argument values match those in the
argument list of the SCTL statement in order to produce useful code.
If a call argumen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>