
P r i m e , A s s e m b l y L a n g u a g e
Programmer's Guide
Revision 21.0

DOC3059-2LA

Assembly Language
Programmer's Guide

Second Edition

by

Len Bruns

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 21.0 (Rev. 21.0).

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
l icense.

Copyright 1987 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of
Prime Computer, Inc. DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS,
PERFORM, Prime INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY,
PRIMIX, PRISAM, PST 100, PT25, PT45, PT65, PT200, PW153, PW200, PW250,
RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250, 2350, 2450, 2550,
2650, 2655, 2755, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955, and
9955II are trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition (FDR3059-101) March 1979 for Release 16.3
Update 1 (COR3059-001) January 1980 for Release 17
Update 2 (PTU2600-104) June 1983 for Release 19.2
Second Edition (DOC3059-2LA) July 1987 for Release 21.0

CREDITS

E d i t o r i a l :
Project Support:
I l l u s t r a t i o n :
Document Preparation:
Production:

Thelma Henner
Margaret Taft
Mingling Chang
Celeste Henry
Judy Gordon

i i

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list

U n i t e d S t a t e s C u s t o m e r s I n t e r n a t i o n a l

Call Prime Telemarketing,
toll free, at 1-800-343-2533,
Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

Contact your local Prime
subs id ia ry o r d i s t r i bu to r,

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts!
1-800-343-2320 (within other states)

1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

i n

Contents

ABOUT THIS BOOK

1 INTRODUCTION

2 USING PMA

Invoking the Prime Macro
Assembler (PMA)

File-naming Conventions
Assembler Messages
Listing Format
Assembly Listing Symbology

Assignment Column Codes
Instruction and Data

Column Codes
Other Listing Information

Cross-reference Listing
Symbology

3 LANGUAGE STRUCTURE

i x

2-1
2-3
2-4
2-4
2-6
2-6

2-6
2-7

2-7

Lines
Statements

Statement Types
Statement Syntax
Continuation Lines

Statement Elements
Constants
Symbols

Terms and Expressions
Terms
Expressions

Functions of Statement Fields
Label Field
Operation Field
Operand Field
Comment Field

Pseudo-operations
Machine Instructions
Recommended Program Structure

3-1
3-2
3-2
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-4
3-10
3-10
3-11
3-11
3-13
3-13
3-16
3-17

4 CODE GENERATION PSEUDO-OPERATIONS

Assembly Control Pseudo-
o p e r a t i o n s (A C) 4 - 1

Conditional Assembly Pseudo-
o p e r a t i o n s (C A) 4 - 5

Symbol-Defining Pseudo-
o p e r a t i o n s (S D) 4 - 1 1

Listing Control Pseudo-
o p e r a t i o n s (L C) 4 - 1 4

5 CONSTANT DEFINITION PSEUDO-OPERATIONS

Address Definition Pseudo-
operations (AD)

Data Definition Pseudo-
operations (DD)

Storage Allocation Pseudo-
operations (SA)

5-2

5-4

5-12

6 LOADING AND LINKING PSEUDO-OPERATIONS

Loader Control Pseudo-
operations (LC)

Program Linking Pseudo-
operations (PL)

7 MACRO DEFINITION PSEUDO-OPERATIONS

6-1

6-4

Macro Definition Block
Macro Definition Pseudo-

operations (MD)

7-2

7-3

8 MACHINE INSTRUCTIONS — V MODE

Types of Addressing
Direct Address
Indexed Address
Indirect Address
Indirect Indexed Address

Register Usage
Saving and Restoring Registers
Register Usage Between

V Mode and I Mode
The V Mode Instruction Set

Gener ic Inst ruct ions
Branch Instruct ions
Computed Go To Instruction
Jump Instructions
Memory Reference Instructions
Process-related Operat ions
Res t r i c ted Ins t ruc t i ons

8-1
8-2
8-3
8-3
8-4
8-6
8-7

8-7

8-14
8-16
8-16
8-19
8-30
8-32

v i

9 MACHINE INSTRUCTIONS — I MODE

T y p e s o f A d d r e s s i n g 9 - 1
D i r e c t A d d r e s s 9 - 3
I n d e x e d A d d r e s s 9 - 3
I n d i r e c t A d d r e s s 9 - 3
I n d i r e c t I n d e x e d A d d r e s s 9 - 4
Addressing Through Registers 9-6
I m m e d i a t e A d d r e s s i n g 9 - 8

R e g i s t e r U s a g e 9 - 9
Saving and Restoring Registers 9-9
Register Usage Between

I M o d e a n d V M o d e 9 - 9
The I Mode I ns t r uc t i on Se t 9 -10

G e n e r i c I n s t r u c t i o n s 9 - 1 1
B r a n c h I n s t r u c t i o n s 9 - 1 5
Computed Go To Instruct ion 9-17
J u m p I n s t r u c t i o n s 9 - 1 8
Memory Reference Instructions 9-20
P r o c e s s - r e l a t e d O p e r a t i o n s 9 - 3 2
R e s t r i c t e d I n s t r u c t i o n s 9 - 3 3

10 MACHINE INSTRUCTIONS — IX MODE

Indirect Pointer-related
I n s t r u c t i o n s 1 0 - 1

C Language-related Instruct ions 10-3

11 MACRO FACILITY

M a c r o D e fi n i t i o n 1 1 - 2
A r g u m e n t R e f e r e n c e s 1 1 - 2
Assembler Attribute References 11-3
Local Labels Wi th in Macros 11-4

M a c r o C a l l s 1 1 - 4
A r g u m e n t V a l u e s 1 1 - 5
A r g u m e n t S u b s t i t u t i o n 1 1 - 5
Using Macro Calls as

D o c u m e n t a t i o n 1 1 - 6
N e s t i n g M a c r o s 1 1 - 8
C o n d i t i o n a l A s s e m b l y 1 1 - 9
M a c r o L i s t i n g 1 1 - 9
A s s e m b l e r A t t r i b u t e L i s t 1 1 - 1 0

12 USING SUBROUTINES

r
r

Local Subroutines
Local Calls in V Mode
Local Calls in I Mode

External Subroutines
External Calls
Entrypoints to Called Routines
Argument Passing in External

Cal ls

v i i

12-1
12-2
12-5
12-7
12-7
12-8

12-11

Returning From an External Call 12-11
T h e S h o r t c a l l M e c h a n i s m 1 2 - 1 5

G e n e r a l C o n s i d e r a t i o n s 1 2 - 1 5
Argument Passing in V Mode 12-16
S h o r t c a l l i n I M o d e 1 2 - 1 8
Shortcalled Functions in

V M o d e a n d I M o d e 1 2 - 2 0

13 LINKING AND LOADING

Differences Between SEG and BIND 13-2
U s i n g t h e S E G L i n k e r 1 3 - 2
U s i n g t h e B I N D L i n k e r 1 3 - 4

14 PROGRAM EXECUTION AND DEBUGGING

Program Execution 14-1
Program Debugging 14-2

Using VPSD 14-2
VPSD Subcommand Line Format 14-3
VPSD Subcommands 14-6

Using IPSD 14-14
Invoking IPSD
Features Supported by IPSD

but not VPSD 14-17
Restr ic t ions 14-20
IPSDO and IPSD16 14-21

APPENDICES

A ASSEMBLER ERROR MESSAGES

B INSTRUCTION SUMMARY CHART

C PRIME EXTENDED CHARACTER SET

Specifying Prime ECS Characters C-2
D i r e c t E n t r y C - 2
O c t a l N o t a t i o n C - 2
C h a r a c t e r S t r i n g N o t a t i o n C - 2

Special Meanings of Prime ECS
C h a r a c t e r s C - 5

Assembly Programming
C o n s i d e r a t i o n s C - 6

Prime Extended Character Set
T a b l e C - 6

I N D E X X - l

C O M P O S I T E I N D E X C X - 1

V l l l

About This Book

The Assembly Language Programmers Guide, Second Edition, documents the
use of the Prime Macro Assembler (PMA) as implemented at PRIMOS
Revision 21.0. It replaces the first edition of the same guide and its
various updates. It is a completely rewritten guide, whose salient
features are

Reorganization of the text into a sequence of chapters that more
closely parallels an actual assembly. Introductory chapters
give an overview of the assembler and describe its invocation
and command line options. The remaining chapters discuss coding
the program, defining and calling macros and subroutines,
linking the program, executing, and debugging.

Removal of most material that is duplicated in other volumes.
Where required for an understanding of the subject under
discussion, this material has been replaced by references to the
appropriate manuals. This guide is, therefore, a more compact
but no longer self-contained reference text; it is intended to
be used in conjunction with other manuals. A list of reference
documents appears later in this preface.

Elimination of discussions of S mode and R mode. Use of these
older addressing modes is declining, and the user is urged to do
all new programming in the current V, I, and IX addressing
modes. For those users who need to maintain existing S-mode and
R-mode programs, the relevant information in the first edition
of this guide is still valid. The System Architecture Reference
Guide and the Instruction Sets Guide also continue to present
information on S mode and R mode.

I X

Summary of Chapters and Appendices

This book contains the following chapters and appendices:

Chapter 1 is an overview of the current implementation of the
assembler; Chapter 2 describes its method of invocation and the
various command line options available.

Chapter 3 is a detailed description of the language elements:
statements and their components; terms and expressions; and the
functions of statement components and fields.

Chapters 4 through 7 discuss the coding of the four major categories of
pseudo-operations and their functions and requirements.

Chapters 8 through 10 discuss, respectively, the instruction sets for
V mode, I mode, and IX mode.

Chapter 11 describes the coding and calling of macro routines and the
logic capabilities of macro processing, while Chapter 12 is devoted to
several methods of calling local and external subroutines.

Chapter 13 discusses simple linking of assembled programs using the SEG
and BIND linkers, with references to other documents for more complex
linking tasks.

Chapter 14 briefly describes the invocation of linked programs, and
goes on to discuss V-mode and I-mode debugging in some detail.

Three appendices provide reference material in the form of a list of
assembler error messages (Appendix A); a summary of the V, I, and IX
mode instruction sets (Appendix B) ; and a description of the Prime
Extended Character Set (Prime ECS) and its use (Appendix C).

Reference Documents

The following guides are frequently referred to in the text of this
book.

System Architecture Reference Guide, DOC9473-2LA

Instruction Sets Guide, DOC9474-2LA

SEG and LOAD Reference Guide, DOC3524-192 and update,
UPD3524-21A, for Rev. 19.4

Programmer's Guide to BIND and EPFs, DOC8691-1LA

Advanced Programmer's Guide, Vol. I: BIND and EPFs, DOC10055-1LA

Advanced Programmer's Guide, Vol. II: File System, DOC10056-2LA

Advanced Programmer's Guide, Vol. Ill: Command Environment,
DOC10057-1LA

Advanced Programmer's Guide, Vol. 0: Introduction and Error
Codes, DOC10066-2LA

Subroutines Reference Guide, Vol. I: Language Interface,
DOC10080-2LA

Subroutines Reference Guide, Vol. II: File System, DOC10081-1LA
and update, UPD10081-11A

Subroutines Reference Guide, Vol. Ill: Operating System,
DOC10082-1LA and update, UPD10082-11A

Subroutines Reference Guide, Vol. IV: User Libraries, DOC10083-1LA
and update, UPD10083-11A

x i

PRIME DOCUMENTATION CONVENTIONS

The fol lowing conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.

Convent ion

UPPERCASE

Exp lana t ion

In command formats, words
in uppercase indicate the
names of commands, options,
statements, and keywords.
Enter them in either upper
case or lowercase.

Example

SLIST

In PMA statements, upper
case elements are entered
exactly as shown, and only
in uppercase.

DATA value

lowercase In command formats and PMA
statements, words coded in
l o w e r c a s e i n d i c a t e v a r i
ables for which you must
substitute a value.

LOGIN user-id

DATA value

A b b r e v i a t i o n s
in format
s ta tements

Brackets
[]

If an uppercase word in a
command format has an ab
brev ia t ion , e i the r the ab
breviation is underscored or
the name and abbreviat ion
are placed within braces.

Brackets enclose a list of
one or more optional items.
Choose none, one, or more of
these items.

LOGOUT

(SET_QUOTA
I SQ

LD -BRIEF
-SIZE

Braces
{ }

B races enc lose a l i s t o f
items. Choose one and only
one of these items.

CLOSE I filename
I ALL

Ver t ica l bars
w i t h i n
b r a c k e t s

[* A | B | C |]

Vert ical bars within brack
ets offer a choice among two
or more items. Choose either
none or one of these items;
do not choose more than one.
Asterisked value is the de
f a u l t .

■L [*YES|NO|TTY]

x n

Convention

E l l i p s i s

Parentheses
()

Hyphen

Underscore
in examples

Apostrophe

Angle brackets
in examples

< >

Explanation

An ell ipsis indicates that
the preceding item may be
entered more than once in
a format.

In command or statement for
mats, you must enter paren
theses exactly as shown.

Wherever a hyphen appears
as the first character of an
option, i t is a required
part of that option.

In examples, user input is
u n d e r s c o r e d b u t s y s t e m
prompts and output are not.

An apostrophe preceding a
number indicates that the
number is in octal.

In examples, the name of a
key enclosed within angle
brackets indicates that you
press that key.

Example

DATA value, . . .

SPOOL FILE(1 2 3)

XFER MAC (FROM)=1

SPOOL -LIST

OK, RESUME MY_PROG
This is the output
of MY_PROG.CPL
OK,

'200

OK, ED <RETURN>

r

r
x i i i

Introduction

The Prime Macro Assembler (PMA) at PRIMOS Revision 21.0 incorporates
several enhancements over previous versions. Some of these are related
to the operation of the assembler itself, while others are concerned
with new PRIMOS and hardware facilities. The following items describe
the enhancements.

The assembler is capable of assembling much larger object
programs than in the past, owing to a new method of storing the
symbol table. Symbol table size has until now been limited by
the bounds of a single segment that also contains the
assembler's executable code. The new storage mechanism uses a
segment apart from the execution segment; moreover, it is
capable of adding more symbol storage segments when the need
ar ises.

Two assembler attributes that were previously designated as
spare are no longer so designated. Assembly language
programmers who used these attributes for their own purposes can
no longer do so. Attribute #108 is designated as reserved,
while attribute #111 contains a parity value established by
whether the length of the character string defined by the most
recent DATA, BCI, or BCZ pseudo-operation was even (parity is 0)
or odd (parity is 1). Assembler attributes are listed in
Chapter 11.

1-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

• In addition to formerly-supported S, R, V, and I address modes,
IX mode is supported as of Revision 21.0. IX mode operates on
50 Series Models 2550™) 9650™) 9750™) 9950™) 9955™) and 9955II™
It includes a small set of additional instructions that enable
operations involving C language pointers and characters. These
.instructions are described in Chapter 10.

• The assembler supports an I mode addressing enhancement that
permits a general-register-relative format in memory reference
instructions and adds two indirect pointer related instructions,
AIP and LIP. GRR format (described in Chapter 9) improves the
performance of programs that must address large arrays that
could potential ly cross segment boundaries. This format
operates only on the 50 Series models listed for IX mode in the
preceding paragraph.

• The assembler supports the Prime extended character set
(Prime ECS) . The extended character set and its implications
for assembly-language programs are described in Appendix C.

• A new subroutine calling mechanism, shortcall, is described in
Chapter 12. Shortcall provides a much faster transfer of
control to and from a PMA-written subroutine than the
traditional PCL/PRTN mechanism. Shortcall, from a high-level
language caller's point of view, is currently implemented only
in Fortran 77. I-mode PMA shortcalled routines can take
advantage of GRR, register-to-register, and immediate addressing
formats to further enhance overall program efficiency.

• The assembler produces binary files that are compatible with the
BIND linker, introduced at Revision 19.4, to create runfiles in
executable program (EPF) format. A description of a simple BIND
session appears in Chapter 13.

S e c o n d E d i t i o n 1 - 2

Using PMA

The Prime Macro Assembler (PMA) is a three-pass assembler. The first
pass creates a symbol table containing internal symbols and their
segment-relative displacements, and identifies external references.
The second pass uses the symbol table to resolve references to the
internal symbols, generates object code blocks for input to the linker
a n d , o p t i o n a l l y, c r e a t e s a l i s t i n g . T h e t h i r d p a s s p e r m i t s
optimization of stack and link frame references.

INVOKING THE PRIME MACRO ASSEMBLER (PMA)

PMA is invoked by the command:

PMA pathname [-option-1] [-option-2]...[-option-n]

pathname specifies the pathname of your source PMA program. The
standard pathname conventions apply. File naming conventions are
described following the option descriptions.

2 - 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

PMA supports the following options. Default options are indicated by
asterisks (*) .

- B I N A RY, - B [* Y E S | N O | p a t h n a m e] - R E S E T
- E R R L I S T - R O U N D

* - E X P L I S T * - X R E F L
- I N P U T [p a t h n a m e] , - I [p a t h n a m e] - X R E F S
-LISTING, -L [* YES|NO ITTY|SPOOL|pathname]

Brief descriptions of these options are given below.

-BINARY [* YES|NO|pathname]

Specifies binary (object) file.

[YES] gives source-program.BIN if source program name has
.PMA suffix, otherwise gives B_source-program. Binary
file is in the home directory.

[NO] gives no binary file.
[pathname] allows complete specification of binary file.

-ERRLIST

Generates errors-only listing (overrides pseudo-operation
NLIST).

* -EXPLIST

Generates full assembly listing (overrides pseudo-operation
NLIST).

-INPUT [pathname]

Specifies source program.

[pathname] is the name of source program. (Do not use if
name immediately follows the PMA command). Standard
pathname conventions apply.

-LISTING [* YES|NO|TTY|SPOOL|pathname]

Specifies l ist ing file.

[YES] gives source-program.LIST if source program has .PMA
suffix, otherwise gives L_source-program. Listing file
is in the home directory.

[NO] gives no listing file.
[TTY] displays assembly listing at the terminal.
[SPOOL] puts listing file into line printer spool queue.
[pathname] allows complete specification of listing file.

S e c o n d E d i t i o n 2 - 2

USING PMA

-RESET

Resets A, B, and X Register settings.

-ROUND

Rounds rather than truncates conversion of real numbers to
d e c i m a l .

* -XREFL

Generates complete cross reference listing.

-XREFS

Omits from cross reference list symbols that are defined but
not used.

FILE NAMING CONVENTIONS

For consistency with Prime's other language processors, the pathname of
the source file should be suffixed with a language name code. For the
assembler, the code is .PMA. The form of the source filename affects
the form of the default names of the binary and listing files: if the
source filename suffix is not .PMA, the default binary and l ist ing
filenames are prefixed by B_ and L_, respect ively; i f the source
filename suffix is .PMA, the default binary and listing filenames are
s u f fi x e d b y . B I N a n d . L I S T, r e s p e c t i v e l y . T h e . P M A f o r m i s
recommended, both for consistency and for ease of use in subsequent
operations such as linking and invoking the resulting programs.

The defaults for both binary and listing filenames can be overridden by
specifying different pathnames as arguments to the -BINARY and -LISTING
options, respectively. The -LISTING option also accepts TTY as an
argument to cause the assembly listing to appear at your terminal.

FILE USAGE

Three files may be involved during an assembly:

F i l e T y p e P R I M O S F i l e u n i t

S o u r c e 1
L i s t i n g 2
B i n a r y 3

PMA automatically opens files for listing and binary output. They are
closed at the termination of each assembler run.

2 - 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The PRIMOS commands LISTING and BINARY permit you to concatenate two or
more listing files, and two or more binary files, respectively. These
commands, when used before a series of PMA invocations, open file units
2 (for the listing file) and 3 (for the binary file) . The assembler
uses them to write the files, and leaves them open when it returns
control to PRIMOS. Each subsequent invocation of the assembler appends
its listing and binary outputs to those already written. The files can
be closed by use of the PRIMOS CLOSE command. Refer to the PRIMOS
Commands Reference Guide for descriptions of these commands.

ASSEMBLER MESSAGES

After the assembler processes a program's END statement, it prints a
message, terminates assembly, and returns control to PRIMOS command
level. The message contains a decimal error count, the assembler
version number, and a copyright statement:

<nn> ERRORS [PMA <version> Copyright (c) Prime Computer, Inc. <year>]

LISTING FORMAT

Figure 2-1 shows a section of a typical assembly listing and
illustrates the main features.

When the assembly listing file is printed using the SPOOL command with
no options, each page begins with a header and contains a page number.
(Some Spooler options disable headers and pagination; refer to the
description of the SPOOL command in the PRIMOS Commands Reference
Guide.) The first statement in a program is used as the initial page
header. If column 1 of any source statement contains an apostrophe
('), columns 3 through 80 of that statement become the header for all
pages that follow, until a new header is specified.

At the end of the assembly listing appears a cross reference table
containing each symbol's name (in alphabetical order), the symbol's
address value with a code indicating the segment in which it resides,
and a list of all line numbers defining or referring to the symbol.
The address values are in octal unless the PCVH pseudo-operation
specifies hexadecimal listing. Each reference is identified by a
four-digit line number. The NLST pseudo-operation suppresses the cross
reference listing; the -XREFS option suppresses symbols which have
been defined but not used.

^ >

S e c o n d E d i t i o n 2 - 4

USING PMA

SAMPLE ASSEMBLER LISTING
(0001) SAMPLE ASSEMBLER LISTING

SEG
(0001) SEG

000000 02.000015 (0002) START LDA
000001 16.000016 (0003) MPY
000002 015414.000017 (0004) ADL
000004 000015 (0005) PIMA
000005 04.000400L (0006) STA OUT
000006 061432.000422L (0007) CALL TODEC
000010 001300.000400L (0008) AP OUT,SL
000012 061432.000424L (0009) CALL TONL
000014 000611 (0010) PRTN
000015 000003 (0011) DATA
000016 000005 (0012) DATA
000017 000000 (0013) DATA 10L
000020 000012

(0014) LINK
0004005 000000 (0015) OUT DEC
0004015 000000

000012
000011
000000
177400
014000

(0016) ECB$ ECB START

000421 (0017) END ECB$

0004215 00.000000A
0004225> 000000.OOOO00E
0004245▶ 000000.000000E

TEXT SIZE: PROC 000021 LINK 000026 STACK 000012

B 000017 0004 0013
ECB$ 000401L 0016 0017
M 000015 0002 0011
OUT 000400L 0006 0008 0015
START 000000 0002 0016
TODEC 000000E 0007
TONL 000000E 0009
X 000016 0003 0012

0000 ERRC RS [PMA Rev. 21. 0 Copyright (c) Prime Computer, Inc. 1986]

Sample Assembler Listing
Figure 2-1

2-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

ASSEMBLY LISTING SYMBOLOGY

The first two columns of an assembly listing show the octal
representations of the addresses the assembler assigns to each area
allocated for storage of machine instruction or data strings, and the
generated strings themselves, if any. Appended to each entry in these
columns is a code (a blank is considered a code). These codes are
described in the following two sections.

Assignment Column Codes

The codes in the first assembly listing column indicate the segment to
which the assembler assigns the accompanying generated string. The
meanings of the codes are:

String is assigned to the procedure segment
String is assigned to the linkage segment

The assembler can also allocate space in the stack segment (by a DYNM
pseudo-operation) ; these assignments have no entry in the first
column, but have their stack-relative addresses listed in the second
column with a blank assignment code.

Instruction and Data Column Codes

The second assembly listing column contains the assembler-generated
instruction or data string. Its entries vary in length.

For data strings an entry contains six octal digits and represents one
halfword (16 bits) of storage. For pseudo-operations such as DYNM,
EQU, ORG, and END, it can also represent a 16-bit quantity that can be
interpreted as either a numeric constant or an address, depending on
how the assembler uses it. The entry is terminated by a blank.

For generic instructions (those that do not reference memory) an entry
contains six digits and represents a 16-bit octal operation code. For
memory reference instructions an entry consists of two parts separated
by a period. The first part represents the operation code and contains
two digits (for short-form instructions) or six digits (for long-form
instructions). The second part represents a referenced memory address
and is followed by a code indicating the storage class of the addressed
item.

S e c o n d E d i t i o n 2 - 6

USING PMA

The codes associated with the instruction and data column have the
following meanings:

blank Addressed item is relative to the current module
A Addressed item is an absolute number
E Addressed item is external to the program
L Addressed item is relative to the linkage base (LB)
P Addressed item is relative to the procedure base (PB)
R Addressed item is relative to a general register

(I mode only)
S Addressed item is relative to the stack base (SB)
X Addressed item is relative to the auxiliary base (XB)

Other Listing Information

The remainder of the assembly listing consists of source program line
images and, shown in parentheses, the assembler-assigned line number of
each statement. These line numbers are for the benefit of the cross
reference listing, described in the next section.

CROSS REFERENCE LISTING SYMBOLOGY

The cross reference listing shows, for each symbol defined or
referenced in a program, the symbol name, its storage address and
class, and one or more numbers indicating the statement line number in
which it is defined or referenced.

The storage class codes that can appear in a cross reference listing
are the same as those that can appear in the instruction and data
column of the assembly listing; their meanings are also the same.

2 - 7 S e c o n d E d i t i o n

Language Structure

This chapter describes the structure and function of Prime Macro
Assembler language statements and the elements with which they are
constructed.

The PMA language structure is both flexible and simple. For example,
here is a program which includes three pseudo-operations, a machine
instruction and a literal.

SEG Pseudo-operation — assemble in V-mode
LDA ='301 Machine instruction with literal operand
CALL T10B Pseudo-operation — subroutine call (generates machine

i n s t r u c t i o n) .
END Pseudo-operation — defines end of source code.

LINES

Input to the assembler consists of statement, comment, and header
lines. The basic unit of information is the line, which consists of
fields separated by spaces. Line syntax is described later in this
chapter.

All lines except comment and header lines must be entered in uppercase
characters. Comment lines, header lines, and the comment fields of
statement lines can be in uppercase or lowercase.

3 - 1 S e c o n d E d i t i o n

A S S E M B L Y L A N G U A G E P R O G R A M M E R ' S G U I D E _ ^

T h e r e a r e t h r e e b a s i c l i n e f o r m a t s : ' ^ 1

Comment Line Column 1 contains an asterisk (*) . The entire line
is treated as a comment.

Header Line Column 1 contains an apostrophe ('). The rest of
the line is used as a page title for subsequent
pages.

Statement Statements are descr ibed in the fo l lowing sect ions.

STATEMENTS

Every statement causes the assembler either to generate machine code
(instructions or data) or to take some assembler or l inker related

a c t i o n .

Statement Types

There are four kinds of statements

Machine inst ruct ions
Generate the instructions and data the program is to execute
and use. Machine instructions are fully described in Chapters
8, 9, and 10, and in the Instruction Sets Guide.

Pseudo-operat ions
Direct the assembler to per form some funct ion dur ing an
assembly. With few exceptions, they do not generate machine
ins t r uc t i ons ; t hey do , howeve r, f r equen t l y gene ra te da ta .
Pseudo-operations are described in Chapters 4 through 7.

Macro defin i t ions
Delimit blocks of code or data (or both) that can be called as
i f they were ins t ruc t ions. Th is group a lso conta ins some
pseudo-opera t ions tha t p rov ide a log ic capab i l i t y w i th in a
macro definition block. See Chapter 7.

Macro calls
Invoke code previously defined in macro definitions. These are
described in Chapter 11.

S e c o n d E d i t i o n 3 - 2

LANGUAGE STRUCTURE

Statement Syntax

Statements can have up to four fields, delimited by spaces:

[label] operat ion [operand] . [comment]

label The first character of a label must be in column 1 of a
line. If a statement does not have a label, the first
co lumn must be b lank . Labe ls a re f rom 1 to 32
characters in length. The first character is a let ter
(A through Z), and the remaining characters can be
letters, numerals (0 through 9), the dollar sign ($), or
underscore (_) .

operat ion The operat ion field is the only field required in al l
types of instructions. I t contains the mnemonic code
for a machine instruction or a pseudo-operation. It is
separated from the label field, if any, by one or more
spaces.

o p e r a n d T h e n u m b e r o f o p e r a n d s a n d t h e i r m e a n i n g s a r e
operation-specific. Some statements do not require an
operand, while others require one or more. The first
operand is separated from the operation code by one or
more spaces; multiple operands are separated by commas,
and there must be no intervening spaces unless an
o p e r a n d i s a l i t e r a l t h a t c o n t a i n s s p a c e s . L i t e r a l
operands and operands defining character constants can
contain any character in the Prime ECS character set
(see Appendix C).

comments All text following either column 72 or two spaces after
the last operand (10 spaces or following a colon in
macro calls) is treated as a comment. Comments can
contain any character in the Prime ECS character set.

Cont inuat ion Lines

Any statement can be interrupted by a semicolon (;) and continued on
the next l ine. Any text fo l lowing the semicolon is t reated as a
comment. Processing of the statement continues with the first nonspace
character in the following line. Semicolons appearing within comments
a re no t i n te rp re ted as con t i nua t i on i nd i ca to rs . A sem ico lon t ha t
appears as a character in a literal must be preceded by the assembler's
escape character, the exclamation point (!).

3-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

STATEMENT ELEMENTS

Statement elements — labels, operation codes, and operands — are
composed of constants and symbols. These are made up of the subset of
the printing ASCII characters defined for labels, above. The entire
Prime extended character set (Prime-ECS), printing and nonprinting, can
be used in comments, macro instruction operands, literals, and
constants. Refer to Appendix C for a discussion of Prime-ECS.

Constants

Constants are explicit data values. They are most often used in
operands of data-defining pseudo-operations and in literal operands.
They can be used to represent bit configurations, absolute addresses,
program-relative addresses (displacements), and data. A constant may
be any of the following data types:

Decimal
Binary
Hexadecimal
Octal
Character
Address

Symbols

Symbols are alphanumeric strings which represent locations or data.
They may be from 1 to 32 characters in length. The first character
must be a letter (A through Z) , and the remaining characters may be
letters, numerals (0 through 9), the dollar sign ($), or underscore
(_) . Symbols containing more than 32 characters are allowed in the
source code, but only the first 32 characters are examined by the
assembler.

TERMS AND EXPRESSIONS

An operand can be constructed of one or more elements called terms,
combined into an expression by use of one or more operators. These are
described in this section.

Terms

A term is the smallest element that represents a distinct value. It
represents a single precision signed integer and may be a constant or a
symbol.

Second Edition 3-4

LANGUAGE STRUCTURE

Every term, whether used alone or in an expression, has both a value
and a mode. These attributes either are defined by the assembler and
related to the procedure, stack, link, or common location counter, or
they are inherent in the term itself. Symbols defined by the EQU, SET,
and XSET pseudo-operations receive both the mode and the value of the
term or expression in their operand fields; labels, at the time of
their definition, take the mode and value of the current location
counter. Refer to the description of the ORG statement in Chapter 4
for a discussion of how the mode of the location counter is set). Some
examples of terms are:

'123

C A '

BETA

1.23E2

C'ABC

Octal constant

Character (string) constant

Symbol

Invalid because it is a floating point number; it does
not have a single precision integer value

Invalid because the value is too large for 16 bits

Value of a Term: The value of a term is its single precision numeric
equivalent. It can represent either an address relative to some base
in the program or an absolute number. Some examples of symbolic term
definitions, usages, and values are shown below.

Symbol Usage

LABSYM LABSYM LDA LOC

Explanation

LABSYM is a label symbol whose value
is the address (program counter value)
of the instruction LDA LOC.

DATSYM DATSYM DATA '10 DATSYM is a label symbol whose value
is the address (program counter
value) of the constant '10.

ADSYM ADSYM DAC LOC ADSYM is a label symbol whose value
is the address (program counter
value) of the address constant LOC.

ABSSYM ABSSYM EQU '10

CHRSYM CHRSYM EQU CA'

ABSSYM is a symbol whose value is '10

CHRSYM is a symbol whose value is
A<space> ('140640).

3-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Mode of a Term: The mode of a term defines whether the value
associated with a symbol is absolute or relative to some base. A term
can have one of the following modes:

Abso lu te The value of the symbol is independent of
i t s p o s i t i o n r e l a t i v e t o a n y b a s e .
Symbols equated to absolute terms or to
the results of expressions involving only
absolute terms have a mode of absolute.

Procedure Relative The symbol is defined relat ive to the
start of the module; it is identified by
a n a s t e r i s k i f t h e c u r r e n t l o c a t i o n
counter's mode is procedure relative, or
b y r e f e r e n c e t o a n o t h e r p r o c e d u r e
r e l a t i v e l a b e l .

Common Relative The symbol is defined relative to a data
area defined by a COMM pseudo-operation.
This data area can be shared by several
i n d e p e n d e n t l y a s s e m b l e d o r c o m p i l e d
r o u t i n e s .

E x t e r n a l The symbol is defined in a separately
assembled module and is identified in the
c u r r e n t m o d u l e b y a n E X T
pseudo-opera t ion .

Stack Base Relative The symbol is defined relat ive to the
s t a r t o f t h e c u r r e n t p r o g r a m ' s s t a c k
area. Var iab les defined by the DYNM
pseudo-operation or by SB% + value have a
mode of stack relative.

Procedure Absolute The symbol is defined relat ive to the
start of the procedure segment and is
identified by PB% + value.

Linkage Base Relative

Auxil iary Base Relative

The symbol is defined relat ive to the
start of the program's linkage area and
is identified by LB% + value, or * if the
c u r r e n t l o c a t i o n c o u n t e r ' s m o d e i s
l i nkage re la t i ve .

The symbol is defined relat ive to the
contents of the auxi l iary base register
and is identified by XB% + value.

Second Edition 3-6

LANGUAGE STRUCTURE

The mode of a term is represented internally in the assembler by a
number from 0 through 7. The modes and their numeric equivalents are:

0 A b s o l u t e
1 P r o c e d u r e r e l a t i v e
2 Common
3 E x t e r n a l
4 S tack base re la t i ve
5 P rocedu re abso lu te
6 L inkage base re la t i ve
7 A u x i l i a r y b a s e r e l a t i v e

A term's mode number can be represented in an assembly statement by
prefixing the symbol with a left bracket ([):

[ABC

It is thus possible to determine, for example, whether the mode of the
term ABC is stack base relative or linkage base relative by a sequence
such as

MODE

The assembler generates statement_l if ABC is a stack based label, or
statement_2 if it is a linkage based label.

Refer to the discussion of conditional assembly in Chapter 4 for a
description of the use of IF and other conditional statements.

Expressions

Expressions contain one or more terms (constants or symbols) joined by
operators. Expressions may contain ari thmetic, logical, relat ional and
sh i f t opera to rs .

SET [ABC
IF MODE • EQ. s ta temen t_ l
IF MQDE • EQ. statement_2

3 - 7 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Ar i thmet ic Opera to rs : Per fo rm add i t ion , sub t rac t ion , mu l t ip l i ca t ion , *^ t
and division operations:

O p e r a t o r M e a n i n g E x a m p l e R e s u l t (O c t a l)

+ A d d i t i o n ' 3 + ' 4 0 0 0 0 0 7

S u b t r a c t i o n ' 1 0 - ' 3 0 0 0 0 0 5

* M u l t i p l i c a t i o n ' 2 0 * ' 1 0 0 0 0 2 0 0

/ D i v i s i o n ' 2 3 / ' 1 0 0 0 0 0 0 2

Division retains only the integer part of the quotient.

Logical Operators: Perform a logical operation on two 16-bit operands:

O p e r a t o r M e a n i n g E x a m p l e R e s u l t (O c t a l)

. O R . L o g i c a l O R ' 1 2 3 . 0 R . ' 4 5 6 0 0 0 5 7 7

. X O R . L o g i c a l
Exclusive OR '123.XOR.'456 000575

.AND. Log ica l AND '123.AND. '456 000002

Relational Operators: Perform a comparison of two 16-bit operands with
a result of 0 if false and 1 if true.

O p e r a t o r R e l a t i o n Example R e s u l t (O c t a l)

• EQ. e q u a l ' 1 2 3 . E Q . ' 1 2 3 000001
' 1 2 3 . E Q . ' 4 5 6 000000

.NE. not equal ' 1 2 3 . N E . ' 1 2 3 000000
' 1 2 3 . N E . ' 4 5 6 000001

.GT. g r e a t e r t h a n ' 1 2 3 . G T. ' 1 2 3 000000
' 4 5 6 . G T. ' 1 2 3 000001

.GE. g r e a t e r t h a n ' 1 2 3 . G E . ' 1 2 3 000001
or equal ' 1 2 3 . G E . ' 4 5 6 000000

. L E . less than ' 1 2 3 . L E ., ' 1 2 3 000001
or equal ' 1 2 3 . L E ., ' 4 5 6 000001

. L T. less than ' 1 2 3 . L T., ' 4 5 6 000001
' 4 5 6 . L T., ' 1 2 3 000000

S e c o n d E d i t i o n 3 - 8

LANGUAGE STRUCTURE

Shift Operators: Perform logical right or left shift of an expression,
using the syntax:

argument-expression .LS. shi f t -count-expression
.RS.

O p e r a t o r M e a n i n g E x a m p l e R e s u l t (O c t a l)

. L S . L e f t S h i f t ' 1 2 3 . L S . ' 3 0 0 1 2 3 0

. R S . R i g h t S h i f t ' 1 2 3 . R S . ' 3 0 0 0 0 1 2

Expression Conventions: The following conventions apply to the
construction of expressions.

Spaces Opera to rs can be p receded and fo l lowed by a
single space (more than one space causes the
assembler to treat the rest of the line as a
comment).

S i g n s T h e o p e r a n d s f o r a r i t h m e t i c o p e r a t o r s m a y b e
signed.

Operator Priority In expressions with more than one operator, the
operator with the highest priority is performed
fi r s t . I n c a s e s o f e q u a l p r i o r i t y, t h e
eva lua t i on p roceeds f rom le f t t o r i gh t .
Parentheses can be used to alter the order of
evaluat ion.

P r i o r i t y O p e r a t o r

H i g h e s t * /

+ -

.RS. .LS

Lowest

.GT. .GE. • EQ

.NE. . L E . . LT

.AND.

.OR.

.XOR.

3 - 9 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Resultant Mode: For al l operat ions except addit ion and subtract ion,
both operands' modes must be absolute; the resultant mode is absolute.

When an addition operator is used, no more than one of the terms can be
relative. If one term is relative, the resultant mode is the mode of
the relative term; if all terms are absolute, the resultant mode is
a b s o l u t e .

When a subtraction operator is used, one or both terms can be relative.
If both are relative, they must be relative to the same base; the
resultant mode is absolute. When one term is relative, it must be the
first term; the resultant mode is the mode of the relative term.

For mul t ip l icat ion and div is ion, both terms must be absolute; the
resultant mode is absolute. For division, i f the resultant value is
not an integer, the fractional part is discarded and the value is the
in teger par t .

FUNCTIONS OF STATEMENT FIELDS

This section describes the functions of the four fields of all assembly
language statements.

Label Field

The label field equates a symbolic name appearing within it to a
numeric value. The value can represent either the address of a program
element (instruction or data) or a numeric constant. In either case,
the value is a 16-bit integer quantity, and can range from 0 through
65535 decimal (0 through 177777 octal), inclusive.

A symbolic name is defined when it appears in a statement's label
field. I t is referenced when i t appears in an operand field. This
means that when a symbolic name, or label, appears in the label field,
the assembler assigns a value to the name. The value assigned depends
on the type of statement. For an instruction statement, the value is
the location of the instruction relative to the start of the program.
For a psuedo-operation, the value depends on the function of the
pseudo-operation (See Chapters 4 through 7 for descriptions of these
f u n c t i o n s .)

When a label appears in the operand field of a statement, the assembler
retrieves the assigned value and substitutes it for the symbolic name.
For all machine instructions and most pseudo-operations, the relative
placement in a program of statements that define labels and those that
re fe rence them i s immate r ia l . A few pseudo-opera t i ons , however,
require that labels used in their operand fields be defined before they
are referenced. These requirements will be indicated where appropriate
in the descriptions of pseudo-operations later in this guide.

S e c o n d E d i t i o n 3 - 1 0

LANGUAGE STRUCTURE

Operat ion Fie ld

The operation field of a statement contains the mnemonic operation code
of an ins t ruc t ion or a pseudo-opera t ion . An ins t ruc t ion mnemonic
causes the generat ion of a machine instruct ion; a pseudo-operat ion
mnemonic causes the assembler to take some action which may or may not
result in the generation of machine code. An ORG pseudo-operation, for
example, causes the assembler to reset its current location pointer to
the value specified in its operand field, and assigns that value to the
ORG's label if there is one; an EQU pseudo-operation simply assigns a
numeric value to a label. A BSS pseudo-operation allocates a specified
number of memory locations but does not fill them with anything; a
DATA or DEC pseudo-operation allocates memory locations and stores
specified values in them.

In an instruction statement, a j% appended to the mnemonic forces the
assembler to generate th is inst ruct ion in long (32-bi t) form, even
though it would normally be generated in short form. The % notation is
valid only in V mode. (Short and long form instructions are described
in Chapters 8 and 9.)

A j£ appended to the mnemonic forces the assembler to generate this
instruction in short (16-bit) form, even though it would normally be
generated in long form (this can be done only in certain cases; see
Chapters 8 and 9 for more information). The # notation is valid only
in V mode.

Operand Field

The operand field, for those statements that require one, contains the
representation of the program element to be acted upon. For a machine
instruct ion i t is normal ly an address expression, and may include
indirect ion, indexing, and base register references. I t can also, in
ce r ta in cases , con ta in a numer i c cons tan t . Re fe r to TYPES OF
ADDRESSING in Chapter 8 (V mode) or Chapter 9 (I mode) of this guide,
and to Chapter 3 of the System Architecture Reference Guide. For
pseudo -ope ra t i ons , t he ope rand fie ld pe r fo rms a w ide va r i e t y o f
funct ions, f rom defining the values of constants to control l ing the
actions of the linker after assembly is completed. Chapters 4 through
7 detail the actions and operand requirements of pseudo-operations.

Asterisk in the Operand Field: An asterisk in an operand field has two
funct ions. One is to represent an address relat ive to the current
value of the assembler location counter. When used by i tself , i ts
value is equal to the displacement, from the beginning of the procedure
or l inkage segment , o f the s ta tement the assembler i s cur ren t ly
process ing. I t is f requent ly used a long wi th a numer ic increment
(*+nn) or decrement (*-nn) to represent a displacement of nn halfwords
relative to the current location.

3 - 1 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The asterisk's other function is to indicate indirection, with or
without indexing; in these cases it always appears following an
address, possibly along with an index designator. It is separated from
the address by a comma. Indirect addressing is described in Chapters 8
(V mode) and 9 (I mode).

Equal sign in the Operand Field: An equal sign defines a literal value
that is to be used by an instruction. A literal is represented as a
constant preceded by an equal sign. The following examples show the
representations of various kinds of literal operands with a load
instruction. In each case, what is loaded is the binary equivalent of
the literal operand. If the binary form does not exactly fill the
indicated number of bits, it is right-justified with leading zero bits
for numeric literals, and left-justified with trailing space characters
for character literals. Floating point literals always take exactly
the indicated number of bits.

LDA =123
LDL =123L
LDA = '123
LDA =%110010
LDA = $2FF
LDA =CAB'
LDL =CABC
LDL =CABCD'
LDL =Z'ABC
LDA =EXPR

FLD =12.3E4
DFLD =12.3D4
QFLD =12.3Q4

decimal literal (16 bits)
long decimal literal (32 bits)
octal literal (16 bits)
binary literal (16 bits)
hexadecimal literal (16 bits)
character literal (16 bits)
character literal (32 bits), space-filled
character literal (32 bits)
character literal (32 bits), zero-filled
literal whose value is expression; see
the following text
single-precision floating point (32 bits)
double-precision floating point (64 bits)
quad-precision floating point (128 bits)

When a literal's value is defined by an expression, any symbols in that
expression must be defined by EQU, SET, or XSET statements (described
in Chapter 4) . The expression's mode must be absolute and its value
must be one that can be expressed as a 16-bit integer. (Refer to the
discussion of terms and expressions, earlier in this chapter.) If SET
or XSET is used to define a symbol, the symbol's value is that computed
in the most recent SET or XSET defining that symbol.

Note

From the assembler's perspective, the size or type of a data
literal does not have to match what is expected by an
instruction using the literal. For example, a statement such
as LDA =CABCD' (a 32-bit literal) is not flagged as an error,
although only the first 16 bits of the literal are loaded into
the A register (a 16-bit register).

Second Edition 3-12

LANGUAGE STRUCTURE

In V mode, the assembler treats the numeric value of a literal as if it
were a label assigned to a constant containing the literal's value. It
reserves storage for the constant and stores the constant in that
location. The assembler generates the constant's storage address as
the operand of the instruction.

In I mode, a number of instructions permit a form of addressing known
as immediate. (Refer to Immediate Addressing, in Chapter 9.) If an
instruction allows immediate addressing and the literal value is
expressible in 16 bits, the literal is stored in the second halfword of
the instruction itself; otherwise it is treated and stored as in V
mode.

Refer to the descriptions of the RLIT and FIN pseudo-operations in
Chapter 5 for information on how and where literals are stored.

Comment Field

The comment field provides space for program documentation. It is
generally used to describe the mechanics of a procedure. Unless
otherwise noted, any text which begins two or more spaces after the
last operand is treated by the assembler as a comment field. In a
macro call, a comment field must either begin 10 or more spaces after
the last operand, or be preceded by a colon (:).

PSEUDO-OPERATIONS

Pseudo-operation statements provide directions to the assembler or to
the linker. Unlike machine instructions, they direct the actions of
the assembler itself, rather than the actions of the assembled program.
Some pseudo-operations generate machine code, but most do not. Those
that do, define and allocate storage for data that the program is to
use, in the form of data constants, address constants, or reserved
areas for data storage or buffers.

Pseudo-operation functions described in this guide are of several
classes. A list of these classes, and the chapters in which their
detailed descriptions appear, follows.

3 - 1 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

AC Assembly control (Chapter 4)
AD Address definition (Chapter 5)
CA Conditional assembly (Chapter 4]
DD Data definition (Chapter 5)
LC Listing control (Chapter 4)
LT Literal control (Chapter 5)
LO Loader control (Chapter 6)
MD Macro definition (Chapter 7)
PL Program linking (Chapter 6)
SA Storage allocation (Chapter 5)
SD Symbol definition (Chapter 4)

Ta b l e 3 - 1 c o n t a i n s a n a l p h a b e t i c a l l i s t i n g o f a l l t h e
pseudo-operations, their functional class and their restrictions, if
any.

All pseudo-operations have an operation field; most also have an
operand field, separated from the operation field by spaces. Labels
are usually optional, but some pseudo-operations either require a label
to be present, or prohibit it.

The operation field contains the mnemonic name that identifies the
pseudo-operation.

The operand field, for those pseudo-operations that require one, can
contain one or more terms separated by single spaces or commas. Terms
can be constants, symbols, or expressions as defined earlier in this
chapter. In certain operations, such as BCI, terms can also consist of
ASCII character strings.

Address expressions are evaluated as 16-bit integer values and used as
a 16-bit memory address, unless otherwise stated. Certain statements
(DAC and XAC) accept indirect addressing and indexing symbols. These
are interpreted according to the addressing mode in effect when they
are encountered.

S e c o n d E d i t i o n 3 - 1 4

Table 3-1
Pseudo-Operat ion Summary

LANGUAGE STRUCTURE

Name Funccion Class Comment

A P A r g u m e n t p o i n t e r A D
B A C K L o o p b a c k C A

B C I D e fi n e A S C I I s t r i n g (b l a n k fi l l) D D
B C Z D e fi n e A S C I I s t r i n g (z e r o fi l l) D D
B E S A l l o c a t e b l o c k e n d i n g w i t h s y m b o l S A
B S S A l l o c a t e b l o c k s t a r t i n g w i t h s y m b o l S A
B S Z A l l o c a t e b l o c k s e t t o z e r o s S A
C A L L E x t e r n a l s u b r o u t i n e r e f e r e n c e P L
C E N T C o n d i t i o n a l e n t r y L O
C O M M F O R T R A N c o m p a t i b l e c o m m o n S A
D 3 2 I U s e 3 2 1 a d d r e s s m o d e L O
D 6 4 V U s e 6 4 V a d d r e s s m o d e L O
D A C D e fi n e 1 6 - b i t a d d r e s s c o n s t a n t D D
D A T A D e fi n e d a t a c o n s t a n t D D
D E C D e fi n e d e c i m a l i n t e g e r c o n s t a n t D D
D F T B D e fi n e t a b l e b l o c k C A
D F V T D e fi n e v a l u e t a b l e C A
D U I I D e fi n e U I I L O
D Y M N D e fi n e s t a c k - r e l a t i v e s y m b o l S D
D Y N T D i r e c t e n t r y d e fi n i t i o n P L
E C B E n t r y c o n t r o l b l o c k P L
E J C T E j e c t p a g e L C
E L M E n t e r l o a d e r m o d e L O
E L S E R e v e r s e c o n d i t i o n a l a s s e m b l y C A
E N D E n d o f s o u r c e s t a t e m e n t s A C
E N D C E n d c o n d i t i o n a l a s s e m b l y a r e a C A
E N D M E n d m a c r o d e fi n i t i o n M P

E N T D e fi n e e n t r y p o i n t P L
E Q U F i x e d s y m b o l d e fi n i t i o n S D
E X T E x t e r n a l r e f e r e n c e P L
F A I L F o r c e e r r o r m e s s a g e C A
F I N I n s e r t l i t e r a l s L T
G O F o r w a r d r e f e r e n c e C A
H E X D e fi n e h e x a d e c i m a l i n t e g e r c o n s t a n t D D
I F T T I f t a b l e t r u e C A
I F T F I f t a b l e f a l s e C A
I F V T I f v a l u e t r u e C A
I F I f t r u e C A
I F x A r i t h m e t i c c o n d i t i o n a l i f C A
I P I n d i r e c t p o i n t e r A D
L I N K P u t c o d e i n l i n k a g e s e g m e n t A C
L I R L o a d i f r e q u i r e d L O
L I S T E n a b l e l i s t i n g L C
L S M D L i s t m a c r o e x p a n s i o n s d a t a o n l y L C
L S T M L i s t m a c r o e x p a n s i o n s L C

Macro defin i t ion
o n l y

Mac ro defin i t i on
o n l y

3 - 1 5 Second Ed i t i on

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table 3-1 (continued)
Pseudo-Operation Summary

Name Func t i on Class Comment

MAC Begin macro definition MP Macro defin i t ion
o n l y

NLSM Don't List macro expansions LC
NLST I n h i b i t l i s t i n g LC
OCT Define octal integer constant DD
ORG Define or ig in locat ion AC
PCVH Print cross reference values in HEX LC
PROC Put code in procedure segment AC
RLIT O p t i m i z e l i t e r a l s LT
SAY Print message MP
SCT Select code within macro MP
SCTL Select code from macro list MP
SEG Segmentation assembly — V-mode AC Must be first

statement in
source program

SEGR Segmentation assembly — I-mode AC Must be first
statement in
source program

SET Changeable symbol definition SD
SETB Set base sector LO
SUBR Define entry point PL
SYML Allow eight-character symbols PL
VFD Define var iable fie lds DD
XAC External address defini t ion AD
XSET Changeable symbol defintion SD

MACHINE INSTRUCTIONS

Machine instruction statements generate the instructions that the
assembled program is to execute. Machine instructions described in
this guide are divided into several groups:

• Generic
• Branch and jump
• Memory reference
• Decimal
• Floating point
• Character
• Process control
• Restr icted

All machine instructions are described in Chapters 8, 9, and 10 (for V,
I, and IX modes respectively). A summary chart of all instructions for
these modes is given in Appendix B.

Second Edition 3-16

LANGUAGE STRUCTURE

RECOMMENDED PROGRAM STRUCTURE

PMA makes using the segmented architecture easy. The programmer can
write straightforward code, such as LDA ADDR; the assembler, depending
on the definition of ADDR, may generate a short or long instruction and
may reference the stack area, the linkage area, the procedure area, or
a temporary area. This is possible because symbols, during assembly,
carry a great deal of state information with them.

The structure of a V-mode or I-mode program should reflect the system
architecture design for the separation of code and data. The
recommended structure is:

Prologue

SEG/SEGR Indicates segmented addressing in V/I mode

RLIT Puts literals in the procedure area

COMM Declares FORTRAN-compatible COMMON areas

ENT Declares entry point(s) to this program

Procedure/Stack Area

Executable code and dynamic storage

Data Area

LINK Defines l inkage area containing static variables

ECB Declares entry control block for this program

End

END Terminates assembly

All of the above declarations are pseudo-operations. Descriptions of
these and other pseudo-operations appear in Chapters 4 through 7 of
this guide.

r
r 3-17 Second Edition

Code Generation
Pseudo-Operations

This chapter describes a group of pseudo-operations that control such
things as the placement of generated code within a program (AC),
equat ing symbols to absolute numeric values (SD), and condit ional
assemb ly o f b locks o f s ta temen ts (CA) . Assemb ly l i s t i ng con t ro l
pseudo-operations (LC) are also included in this chapter.

ASSEMBLY CONTROL PSEUDO-OPERATIONS (AC)

Assembly control pseudo-operations affect the placement of generated
code and the addressing mode in which it is generated. The statements
in this group are listed below.

N a m e F u n c t i o n

END End of source statements.

LINK Put code in linkage segment.

O R G D e fi n e o r i g i n l o c a t i o n .

PROC Put code in procedure segment

SEG Segmented assembly (V mode).

SEGR Segmented assembly (I mode).

R e s t r i c t i o n s

Must appear before any
generated code.

Must appear before any
generated code.

4-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

^- [label] END [address-expression]

Terminates assembly of the source program. All l i terals accumulated
since either the start of the program, or the last FIN statement, are
assigned locat ions start ing at the current locat ion count. Refer to
FIN and RLIT pseudo-operations in Chapter 5 for specific information on
how these statements can affect literal placement.

The label field is permitted, but it serves no useful purpose and is
usually omitted. While address-expression is indicated as optional, it
is required for a main program, that is, the module that contains the
ent ry po in t o f the executab le program ca l led f rom the command
processor. The address expression is the label specified in the ECB
statement that defines the entry control block for this program. The
typical sequence is:

B E G I N fi r s t e x e c u t a b l e i n s t r u c t i o n

LINK

stat ic data declarat ions

ECB_LOC ECB BEGIN
END ECB_LOC

End statements for modules called as subroutines do not need an
operand; these modules' entry points are declared in any of several
ways, as described in Chapter 12, USING SUBROUTINES.

^ L I N K

Places subsequent code in the l inkage segment . The assembler 's
location counter mode is set to linkage relative and its value is set
to one more than the highest value previously used in the linkage area.
I t s tar ts at l inkage-relat ive address '400. L inkage-relat ive mode is
terminated by a PROC or COMM pseudo-operation.

The LINK pseudo-operation requires neither a label field nor an operand
fi e l d .

S e c o n d E d i t i o n 4 - 2

CODE GENERATION PSEUDO-OPERATIONS

^ [label] ORG address-expression

Sets the assembler location counter equal to the mode and value of
address-expression. Symbolic terms in the expression must have been
previously defined. An expression containing an asterisk sets the mode
and value to the current mode and value of the current location
counter. The value may be modified by any terms that have absolute
values, such as constants or symbols equated to constants.

The mode of the address expression may be absolute, procedure relative,
linkage relative, or common, depending on the mode that was in effect
when any symbolic term in address-expression was defined. The value of
the location counter is set to the value of the address expression. If
the mode of the address expression is absolute, then the mode of the
location counter remains unchanged. In all other cases, whether
relative, linkage, or common, both the mode and the value of the
location counter are set to that of the address expression.

If a label appears in the label field, both the value and mode of the
address expression are assigned to that label.

Be careful, when using an ORG statement in the procedure segment, that
the preceding executable code is terminated by some kind of control
transfer instruction such as a branch or jump; otherwise it is
possible for execution to fall into an area containing data or
uninitialized memory. If this happens, run-time errors such as ILLEGAL
INSTRUCTION or ACCESS VIOLATION are likely to result.

^ PROC

Places subsequent code in the procedure segment. The assembler's
location counter mode is set to procedure relative and its value is set
to one more than the highest value previously used in the procedure
segmen t . I t beg ins a t p rocedure - re la t i ve add ress 0 (ze ro) .
Procedure-re la t ive mode is terminated by a LINK or COMM
pseudo-operation.

The assembler's location counter mode is procedure-relative by default
at the beginning of an assembly.

The PROC pseudo-operation requires neither a label field nor an operand
fi e l d .

^ SEG PURE
IMPURE

Directs the assembler to create a segmented V-mode program. SEG must
appear before any instruction, pseudo-operation, or macro call which
generates instructions or data.

4 - 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

PURE and IMPURE are used only in a program that is to be linked by the
BIND linker; they are ignored for programs linked by the SEG loader.
(See Chapter 13, Linking and Loading, for more information on SEG and
BIND.) PURE is the default, and need not be used if no locations
within the procedure segment are modified by the program. IMPURE is
required if the program modifies locations within the procedure
segment. BIND in this case creates an impure (nonshared) procedure
segment; that is, when both pure and impure procedures are linked in a
single BIND run, separate shared and nonshared segments result.

SEG has the following effects

Sets the assembler into a three-pass mode, so that it can
optimize stack and link frame references.

Sets the instruction and address resolution mode to 64V.

Ini t ia l izes the assembler locat ion counter to procedure
relative zero.

^ SEGR PURE
IMPURE

Directs the assembler to create a segmented I-mode program. SEGR must
appear before any instruction, pseudo-operation, or macro call which
generates instructions or data.

See the description of the SEG statement above for a discussion of the
PURE and IMPURE operands.

SEGR has the following effects:

Sets the assembler into a three-pass mode so that it can
optimize stack and link frame references.

Sets the instruction and address resolution mode to 321.

Initializes the assembler location counter to procedure rela
tive zero.

Second Edition 4-4

" >

^

CODE GENERATION PSEUDO-OPERATIONS

CONDITIONAL ASSEMBLY PSEUDO-OPERATIONS (CA)

Conditional assembly pseudo-operations permit the selective inclusion
or omission of one or more program statements, depending on a
true/false condition test using internal assembler variables.

The statements in this group are listed below.

Rest r i c t ions

Macro definition only

Name Func t i on

BACK Loop back.

DFTB Define a symbol table

DFVT Define a value table

ELSE Start FALSE conditional
assembly block

ENDC End conditional assembly
b l o c k

FAIL Force error message

GO Skip forward

IF Start TRUE conditional
assembly block

IFx Start TRUE conditional
assembly block

^ [label-1] BACK [TO] label-2

Directs the assembler to repeat source statements that have already
been assembled, beginning with the statement specified by label-2.
label-1 and TO are optional (TO is used only to improve readability).

The operand label-2 must have been previously defined. It must appear
in the label field of a SET statement whose operand is an asterisk (*).
The correct sequence of statements is shown on the next page.

BACK statements are permitted only within a macro definition. They are
normally used after one of the forms of IF pseudo-operations described
below. Both BACK and label-2 must lie within the same MAC-ENDM range.
(See Chapter 7 for descriptions of MAC and ENDM pseudo-operations.)

4-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The relationship between SET and BACK statements is shown in the ^4
following structure.

MACNAME MAC

l a b e l S E T

code to be repeated

I F x c o n d i t i o n
BACK label go back if condition true
E L S E / E N D C r e q u i r e d w i t h I F x

ENDM

^ label DFTB (symbol-1, expression-1)[...]

Creates a table of symbols and their associated values. The symbol
table is used in conjunction with the IFTF and IFTT statement
(described later in this section). label is the table name, and
symbol-1 is the name of a symbol whose value is an absolute number
defined by expression-1. The symbols defined in a DFTB statement can
be the same as symbols defined by instruction or other pseudo-operation
statements; for example:

A E Q U 5
X D F T B (A , l) , (B , 5) , (C , 3)
X L D A A

There is no conflict between the As and Xs defined within the DFTB and
those defined outside it.

If a DFTB statement has the same label as a previous DFTB statement,
the contents of the second DFTB are appended to that of the first. If
the same symbol occurs in both, the value associated with the second
occurrence replaces that of the first.

^ label DFVT (expression-1, expression-2)[, ...]

Creates a table of locator values and substitution values. The value
table is used in conjunction with the IFVF and IFVT statement

S e c o n d E d i t i o n 4 - 6

CODE GENERATION PSEUDO-OPERATIONS

(d e s c r i b e d l a t e r i n t h i s s e c t i o n) .
express ion-1 is a loca tor va lue
s u b s t i t u t e d .

l a b e l i s t h e t a b l e n a m e ;
and expression-2 is a value to be

^ ELSE

Causes the inclusion of statements following the ELSE if the result of
a previous IFx statement (any IF with a qualifier appended, such as IFP
or IFVT) is false. Statements are included until the matching ENDC
statement is reached. A matching ENDC is one that is at the same
nesting level as its corresponding IFx statement. ELSE statements that
lie within IFx-ENDC pairs nested within the current level are ignored.

ENDC

Defines the end of a conditional assembly area started by
statement. Every IFx statement must have a matching ENDC.

an I F x

^ F A I L

Generates an F error in the assembly l ist ing. You can use FAIL
statements to indicate a failure in the logic controlling a block of
conditionally assembled code. Embed a FAIL statement between IFx and
ELSE statements or between ELSE and ENDC statements; the FAIL message
is displayed if the wrong block of code is assembled, indicating a
failure in the logic of the IFx condition during assembly.

^ GO [TO] label

Causes the assembler to sk ip a l l subsequent s ta tements un t i l a
statement having the specified label is found. Assembly continues at
the labeled statement.

The GO statement is typically used in conjunction with a simple or
structured IF statement (described below). The GO statement's operand
must point forward to the dest inat ion label . The dest inat ion label
must be within the same MAC-ENDM range as the GO statement. An error
condition exists if the assembler reaches an END, MAC, or ENDM
statement before finding the specified label.

^ [l abe l] IF l og i ca l -exp ress ion , s ta temen t

This form of IF is known as a simple IF. It conditionally assembles
statement based on the result of a test. The label is optional.

4-7 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The operand consists of a logical expression followed by a statement.
If the expression is true, the statement is assembled; otherwise the
statement is ignored and the next line is processed. The operand of
the IF statement cannot be continued onto the following line, because
the skip-if-false condition proceeds to the next physical rather than
logical line. Here is an example of a simple IF statement:

VALUE SET 0
IF VALUE.EQ.O, DATA CSUCCESS'

VALUE SET 1
IF VALUE.EQ.O, DATA CFAILURE'

The data constant SUCCESS is generated for the first IF, since VALUE
has been set to zero by the SET statement, and the IF tests true.
FAILURE is not generated, since VALUE has been set to 1; the second IF
therefore tests false and skips the DATA statement.

The six possible logic conditions are:

expression__l .EQ.expression_2

expression_l.GE.expression_2

expression_l .GT.expression__2

expression_l.LE.expression_2

expression_l.LT.expression_2

expression.,! .NE.expression__2

expression_l equal to
expression_2

expression__l greater than or equal
to expression_2

expression_l greater than
expression_2

expression_l less than or equal
to expression_2

expression_l less than
expression_2

expression_l not equal to
expression_2

The periods before and after the condition codes are part of the codes,
and must be entered as shown. Single spaces can be used between
expression_l, the condition code, and expression_2 to improve
r e a d a b i l i t y.

^ [labe l] IFx log ica l -express ion

This form of IF is known as a structured IF. It requires the structure
shown on the following page. The label is optional. The variant x can
have one of the values: M, N, P, Z, TF, TT, VF, or VT; the meanings
of these values are given after the structure description.

Second Edition 4-1

CODE GENERATION PSEUDO-OPERATIONS

[l a b e l] I F x l o g i c a l - e x p r e s s i o n

assemble this code if condition is true

[ELSE

assemble this code if condition is false

.]

ENDC

continue with non-conditional assembly

The ELSE part of the structure can be omitted if, for the false
condition, there is no conditional code to assemble. Assembly then
continues with the nonconditional code following the ENDC statement.

For every IFx statement there must be a matching ENDC statement.
IFx-ENDC pairs can be nested within each other. The nesting depth
count is checked even in sections of code that are being skipped
because of a nested IFx-ENDC block.

There are four expression magnitude variants to the IFx statement:

V a r i a n t M e a n i n g

IFM expression value is minus (< 0)
IFN express ion va lue is not zero
IFP expression value is plus (> 0)
I F Z e x p r e s s i o n v a l u e i s z e r o

Four addit ional structured IF statements take actions based on the
presence or absence of symbols and values in tables defined by DFTB and
DFVT statements.

The general form is:

l a b e l I F x s y m b o l (f o r I F T F o r I F T T)

l a b e l I F x v a l u e (f o r I F V F o r I F V T)

4 - 9 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

IFTF Search for symbol in the table defined by a DFTB statement
whose name is label. (The labels on the DFTB and the IFTF
statements must match.) If the symbol is not found, assemble
the code up to the matching ELSE or ENDC. If the symbol is
found, put its value in assembler attribute #124 and assemble
the code following the matching ELSE or ENDC.

IFTT Search for symbol in the table defined by a DFTB statement
whose name is label. (The labels on the DFTB and the IFTT
statements must match.) If the symbol is found, put its
value in assembler attribute #124 and assemble the code up to
the matching ELSE or ENDC. If the symbol is not found,
assemble the code following the matching ELSE or ENDC.

IFVF Search for a locator value matching value in the table
defined by a DFVT statement whose name is label. (The labels
on the DFVT and the IFVF statements must match.) If the
value is not found, assemble the code up to the matching ELSE
or ENDC. If the value is found, put its substitution value
in assembler attribute #124 and assemble the code following
the matching ELSE or ENDC.

IFVT Search for a locator value matching value in the table
defined by a DFVT statement whose name is label. (The labels
on the DFVT and the IFVF statements must match.) If the
value is found, put its substitution value in assembler
attribute #124 and assemble the code up to the matching ELSE
or ENDC. If the value is not found, assemble the code
following the matching ELSE or ENDC.

In all of the above cases, the assembler can retrieve the value placed
in attribute #124 in a (logically, not necessarily physically) later
instruction or pseudo-operation by coding #124 as its operand. Thus,
the sequence

SYMTAB
VALTAB

DFTB
DFVT

(X,2)
(1-5)

SYMTAB IFTT
VAL_1 SET

ENDC
#124

VALTAB IFVT
VAL_2 SET

ENDC
#124

sets VAL_1 to 2 as a result of looking up the symbol X in table SYMTAB,
and sets VAL_2 to 5 as a result of locating the value 1 in VALTAB and
using its substitution value 5.

Second Edition 4-10

CODE GENERATION PSEUDO-OPERATIONS

SYMBOL DEFINING PSEUDO-OPERATIONS (SD)

Labels used to represent addresses are usually defined when they appear
in the label field of an instruction or pseudo-operation statement.
Symbols so defined are given the procedure-relative, link-relative, or
common-relative mode and the value of the location counter at that
location. The EQU, SET and XSET statements make it possible to equate
symbols to any numeric value, including values that lie outside the
range of addresses in a program.

The following symbol-defining pseudo-operations are described
sect ion.

i n t h i s

Name Function

DYNM Dec lare s tack- re la t ive
data or address constant

E Q U S y m b o l d e fi n i t i o n

S E T S y m b o l d e fi n i t i o n

XSET Symbo l defin i t i on

^ DYNM

The DYNM pseudo-operation is used to define both the label and the
length of a data or address constant; the constants are allocated in a
stack frame. Refer to Chapter 8 of the System Architecture Reference
Guide for a description of stacks and procedure calls.

One use of DYNM is to provide communication between a calling program
and a called program so that arguments can be passed from one to the
other. DYNM is used in the procedure segment of the called program to
provide space for pointers created by the calling program's CALL
pseudo-operation. These pointers accommodate the addresses of the
calling program's arguments. The called program then references the
arguments indirectly through the pointers, as shown in the example on
the following page.

4-11 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

CALLED PROGRAM THAT ADDS TWO NUMBERS
AND RETURNS THE SUM

SEG
SUBR ADD,ECBADD

ADD ARGT
LDA QS,*
ADD RS,*
STA SUM,*
PRTN
DYNM QS(3)
DYNM RS(3)
DYNM SUM (3)
LINK

ECBADD ECB
END

ADD,,QS,3

IDENTIFIES ROUTINE FOR LINKER
REQUIRED FOR ARGUMENT PASSING
LOAD FIRST NUMBER
ADD SECOND NUMBER
STORE SUM
RETURN TO CALLER
POINTER TO FIRST NUMBER
POINTER TO SECOND NUMBER
POINTER TO SUM

The calling program contains a call sequence such as

CALL ADD
AP NUM_1,S FIRST NUMBER
AP NUM_2,S SECOND NUMBER
AP TOTAL,SL SUM

in which NUM_1 corresponds positionally to QS in the called program
ADD, NUM—2 corresponds to RS, and TOTAL to SUM. The argument names, as
can be seen in this example, do not need to be the same; the order of
the APs and their corresponding DYNMs, however, must agree, and they
must both be contiguous.

The CALL statement initiates the creation of the pointers in the stack
frame of the called routine and the ARGT instruction in the called
routine completes the process. The called program's ECB operands
include the label of the first argument pointer (QS) and the number of
arguments expected (3) . Refer to the description of the ECB
pseudo-operation in Chapter 6 for a fuller discussion of ECBs.

DYNM also identifies and allocates any other temporary space needed for
data used wholly within the called program, and only for the duration
of the program's execution. This data is dynamic in that PRIMOS
allocates space for it when the program is called, and deallocates it
when the program returns to its caller.

Each DYNM statement must define the size of the item being allocated.
This is the function of the number in parentheses following the data
name. Argument pointers are always defined as three halfwords long;
other items can be of any length suitable to their purposes. If a
length is not specified, it defaults to one halfword (16 bits).

Second Edition 4-12

CODE GENERATION PSEUDO-OPERATIONS

^ EQU, SET, and XSET

These pseudo-operations equate a label with an absolute number. There
are two permissible formats:

Format 1

{EQU |
SET >abso
XSET J

symbol*! SET > absolute-expression [, symbol = absolute-expression]

Format 2:

EQU j
SET >symbol = absolute-expression, ...

, XSET)

In format 1, the symbol in the label field is equated to the absolute
expression, which may be any expression that is valid in the current
addressing mode. Any symbols used in the expression must already be
defined. The label field is required.

Format 1 can include one or more symbol = value expressions, enabling
several symbols to be defined by one EQU, SET, or XSET statement.

In format 2, equality expressions in the operand field assign numeric
values to symbols. This format al lows one or more equali ty
expressions, separated by commas.

EQU, SET, and XSET all perform the same functions; however, a symbol
defined by EQU cannot be redefined, while a symbol once defined by SET
or XSET can be redefined by subsequent SET or XSET statements without
causing an error message.

EQU statements are normally used outside of conditional assembly and
macro definition blocks; SET and XSET are useful within these blocks
when a label needs to be equated to different values under different
conditions. SET, for example, can be used to increment or decrement a
counter used by an IF/BACK sequence controlling repeated generation of
a block of statements in a macro definition, as shown on the following
page.

4 - 1 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

MACNAME MAC

COUNT
REPT

SET
SET

INITIALIZE COUNT

code to be repeated

SET COUNT=COUNT-l
IFN COUNT
BACK REPT
ENDC

DECREMENT COUNT
REPEAT IF COUNT

NOT ZERO

ENDM

The only difference between SET and XSET is that symbols defined by
XSET do not appear in the assembler's cross reference listing.

LISTING CONTROL PSEUDO-OPERATIONS (LC)

The listing control pseudo-operations are used to control the contents
of the assembler listing. They include the statements in the following
l i s t .

N a m e F u n c t i o n

EJCT E jec t page

L I S T E n a b l e l i s t i n g

LSMD List macro expansions

LSTM List macro expansions with
logic control lines

NLSM Don't l ist macro
expansions

N L S T I n h i b i t l i s t i n g

PCVH Print cross reference
values in hexadecimal

~ >

Second Edition 4-14

CODE GENERATION PSEUDO-OPERATIONS

^ EJCT

Causes the listing device to eject the page (execute a form feed),
print the current page header and page number, and feed three blank
lines before resuming the listing. This function is operable only with
devices having a mechanical form feed capability, such as a line
printer. Also, if the listing is printed via the SPOOL command, the
SPOOL options used may affect the printing of the page header and page
number. Refer to the description of the SPOOL command in the PRIMOS
Commands Reference Guide for details.

^ L IST

Lists all statements except those generated by macro expansions. Since
this is the assembler's default mode, a LIST statement is not required
unless an NLST statement has previously inhibited listing.

^ LSMD
Lists macro call statements plus macro-generated instructions and data

^ LSTM

Lists macro call statements plus all macro-generated lines, including
logic control lines such as such as SET, GO, IF, and BACK.

^ NLSM
Inhibits listing of statements generated by macro expansion. Only the
macro call is listed. NLSM is overridden if the -EXPLIST command line
option is specified when the assembler is invoked (see Chapter 2).
NLSM also suppresses the listing of local variables (those preceded by
&) in the assembler's cross reference listing.

^ NLST

Inhibits listing of all subsequent statements until a LIST statement is
encountered. NLST is overridden if the -EXPLIST command line option is
specified when invoking the assembler (see Chapter 2).

LIST and NLST may be used together in source text to select sections to
be listed. The LSTM, LSMD, and NLSM statements provide control of
listing for macro definitions.

4 - 1 5 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

PCVH

Prints symbol values in the cross reference in hexadecimal instead of
o c t a l .

S e c o n d E d i t i o n 4 - 1 6

Ŝ

^

^

Constant Definition
Pseudo-Operations

This chapter describes a group of pseudo-operations that create static
data and data areas of various kinds that the machine instructions will
use for computation and data storage. This group includes four classes
of pseudo-operations that perform address definition (AD), data
definition (DD), literal control (LT), and storage allocation (SA)
funct ions.

Two kinds of static data are discussed in this chapter: address
constants and data constants. Address constants are used primarily for
indirect addressing. (See TYPES OF ADDRESSING in Chapters 8 and 9 of
this guide, and the System Architecture Reference Guide for fuller
discussions of addressing.) Data constants are numeric or alphanumeric
entities that the program uses for computation and display purposes.
These are described in detail later in this chapter.

A third kind of data, the literal constant, is not generated by a
pseudo-operation, but by being used in the operand field of a machine
instruction. Refer to Operand Field in Chapter 3 for a description of
literal constant formats.

There are two literal-related pseudo-operations, whose function is to
determine where in the assembled program the constants will be stored;
that is, whether they will be stored in the procedure segment or in the
linkage segment. These are described later in this chapter.

One other group of pseudo-operations reserves a specified number of
locations for such things as input and output buffers and temporary
storage areas. These do not load anything into the areas; they simply
reserve space and assign the label, if any, to the space.

5 - 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

ADDRESS DEFINITION PSEUDO-OPERATIONS (AD)

This group of pseudo-operations creates address constants that
statements can use for indirect addressing, subroutine argument
passing, and temporary storage of addresses.

Name Function

AP

DAC

IP

XAC

Argument pointer template

Local address definition

Indirect pointer

External address definition

^- [label] AP address-expression [,modifier]

The AP pseudo-operation generates a template in the form used by the
Procedure Call instruction (PCL) to create indirect pointers for
subroutine argument passing via the subroutine's stack frame.
address-expression is an argument label, written in any V-mode or
I-mode memory reference format except indexed.

modifier controls the storage of address-expression as follows:

S Set argument store bit.
SL Set argument store bit.
*S Set argument store bit.
*SL Set argument store bit.

and last.

Last argument.
Argument is indirect
Argument is indirect

* Intermediate indirect argument. Do not store.

Indirect argument pointers and argument templates are described in
detail in Chapter 8 of the System Architecture Reference Guide.

^ [label] DAC address-expression

The DAC pseudo-operation generates a 16-bit address constant,
containing the address represented by address-expression. An
instruction can use the address constant as an indirect pointer to a
location within the same segment as the instruction. When used for
indirection, the DAC operand must be direct and the referencing
instruction must be in short (16-bit) form; that is, its operation
code must include a terminating # sign. Its operand can be indirect or
indirect indexed.

Second Edition 5-2

CONSTANT DEFINITION PSEUDO-OPERATIONS

LDA#
LDA#

ADCON,*
ADCON,*X

or

ADCON DAC TABLE
TABLE DEC

DEC

The address expression (TABLE in the above example) is the label of a
location within the segment. When a DAC defines an indirect pointer,
its argument must be direct, since V mode and I mode allow only one
level of indirection, and that level is used in the referencing
instruction. Refer to the discussion of indirect addressing in Chapter
8 of this guide.

r

If a DAC simply defines a storage location for an address, that address
can be direct or indirect in both V mode and I mode. In V mode only,
the address can also be indirect post-indexed by X.

The DAC statement can also provide storage space in a subroutine called
by a JST instruction (in V mode only). In this usage it allocates
storage for the address to which control is to
subroutine completes execution. (Refer to the
jump-and-store instructions in Chapter 8.)
before the first executable instruction
following form:

return af ter the
description of the

It must appear immediately
of the subroutine, in the

label DAC **

In this case, label is required, and is the label used in the operand
field of the JST instruction. This subroutine calling technique is
valid only in nonshared segments; that is, the program must be linked
by the SEG loader, or, if it is linked by BIND, the procedure segment
must be designated as impure. (See the description of the SEG or SEGR
pseudo-operation in Chapter 4.)

r
r

^- [label] IP address-expression

The IP pseudo-operation generates a 32-bit V-mode or I-mode indirect
pointer containing the address represented by address-expression. It
is functionally the same as the DAC in indirect addressing, but it can
refer to locations outside the referencing segment. address-expression
can be any of the following: procedure relative, linkage relative,
common, or external. This means that address-expression can contain a
label defined when the assembler's location counter mode is
procedure-relative, linkage-relative, or common-relative, or when the

5-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

label is defined in an EXT pseudo-operation. The linker supplies the
value of the pointer.

IPs, unlike DACs, should not appear in the procedure segment, but in
the l inkage segment (that is , fo l lowing a LINK pseudo-operat ion) .
O the rw ise , an e r ro r w i l l r esu l t du r i ng l i nk ing o f t he assemb led
program.

^ [label] XAC symbol

The XAC pseudo-operation generates a 16-bit pointer containing the
address of symbol, which is defined in an external module. The symbol
name may be the same as a local symbol without conflict. XAC is like
DAC except that it references external symbols. The address of the
external symbol is supplied by the linker.

Because the pointer is only 16 bits long, the module containing the
definition of the external symbol must be linked into the same segment
as the referencing module.

DATA DEFINITION PSEUDO-OPERATIONS (DD)

This group of pseudo-operat ions al locates space for and ini t ia l izes
data constants to known start ing values. Data can appear in any
program segment. However, it is important to note that no data that
the program will modify (by storing into it or performing arithmetic,
log ica l , o r character operat ions on i t) shou ld ever appear in a
procedure segment, which in V mode and I mode is considered to be a
pure segment. No assembler or linker error messages are generated if
th is ru le is v io lated, but a run- t ime error (access v io lat ion) wi l l
occur if the program is linked with BIND and invoked by the RESUME
command.

For coding convenience, the assembler accepts a var iety of data
declaration formats. Simple coding conventions allow the programmer to
use decimal, octal, hexadecimal, and binary integers, decimal floating
point, and character constants. The assembler interprets the notation
and generates one or more data elements in the proper internal binary
f o r m a t .

S e c o n d E d i t i o n 5 - 4

CONSTANT DEFINITION PSEUDO-OPERATIONS

T T h e f o l l o w i n g p s e u d o - o p e r a t i o n s d e fi n e d a t a c o n s t a n t s .

N a m e F u n c t i o n

B C I D e fi n e c h a r a c t e r c o n s t a n t (s p a c e fi l l)

B C Z D e fi n e c h a r a c t e r c o n s t a n t (n u l l fi l l)

D ATA D e fi n e n u m e r i c o r c h a r a c t e r c o n s t a n t

D E C D e fi n e n u m e r i c c o n s t a n t

H E X D e fi n e h e x a d e c i m a l i n t e g e r c o n s t a n t

O C T D e fi n e o c t a l i n t e g e r c o n s t a n t

V F D D e fi n e v a r i a b l e fi e l d s

I [label] BCI 's t r ing '
[label] BCI n,str ing
[label] BCZ 'str ing'

Loads character strings by packing the specified characters two per
halfword, starting with the leftmost 8 bits. Assembled halfwords are
loaded start ing at the current location, and label is assigned the
current locat ion 's va lue.

If the nj_ is omitted, the length of the string within the delimiter
characters determines the number of halfwords to allocate. In a BCI of
this form, the string must begin and end with a pair of nonnumeric
characters which do not appear in the string itself. A string can be
up to 72 characters long.

The single quote is the typical delimiter, but if it appears in the
string, then some other character such as a slash (/) or double quote
(") can replace it:

C0NS1 BCI 'PRIME COMPUTER'
C0NS2 BCZ /YOU'RE OUT!/

The BCI packs 14 characters into 7 halfwords whose contents are PR, IM,
E<space>, CO, MP, UT, and ER. The BCZ packs 11 characters into 6
halfwords, the last of which is padded on the right with a null.

Both BCI and BCZ pad on the right when the string contains an odd
number of characters. BCI pads with a space character ('240), while
BCZ pads with a null character ('000).

5 - 5 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

When the n^ is included (valid only for BCI) , it defines the number of
halfwords to allocate. The constant can consist of any number of
characters up to twice the value of n. If the constant is fewer than
2 * n characters long, the assembler pads the n unused halfwords on the
right with the appropriate number of spaces:

C0NS3 BCI 3,HI
CONS4 BCI 20,

The first BCI loads HI into the first of three halfwords, padding the
second and third with spaces. The second BCI loads 20 halfwords with
spaces; this technique is useful for reserving a buffer initialized to
spaces. Note that when n^ is present, no delimiters are used around
the string.

^ [label] DATA constant(s)

The DATA pseudo-operation can be used in a variety of ways to define
almost any form of constant or group of constants. Data items are
stored starting at the current location, and label is assigned the
value of the current location.

Character Constants: The DATA statement can define one or more
character constants in one of the following forms:

[label] DATA j'string'
[label] DATA n(j'string')

where j specifies the justification within the allocated halfwords if
the length of string is odd; j is either C or R, for left or right
justification, respectively. If C is used, string can be up to 32
characters long; if its length is odd, it is padded on the right with
a space. If R is used, string can be only one character; the leftmost
byte is null ('000) .

n specifies the number of occurrences of the constant to generate. If
n is used, the string specification must be enclosed in parentheses.

The only valid delimiter in a string-defining DATA statement is the
single quote. Therefore, a DATA statement cannot define a string
containing a single quote; use the BCI statement as shown previously.

In both of the above forms, label is assigned the memory location of
the first halfword allocated for the string.

S e c o n d E d i t i o n 5 - 6

CONSTANT DEFINITION PSEUDO-OPERATIONS

A group of character constants (not all the same) can be generated by a
DATA statement of the following form:

[label] DATA constant-l,constant-2,...

where constant-n can assume either of the forms shown in the DATA
statement descriptions previously shown. The following is a valid DATA
statement:

C0NS5 DATA CHI' ,R'X', 3 (CHELLO')

The generated constants consist of one occurrence of HI, one occurrence
of <null>X, and three occurrences of HELLO<space>.

Integer Constants: The DATA statement can generate decimal, octal,
hexadecimal, and binary integer constants in either 16-bit or 32-bit
form. The form of the statement is:

number
[label] DATA [k] +number [L]

-number

k defines the base of the number to its right: if it is omitted, the
base is decimal; a single quote (') indicates octal; a dollar sign
($) indicates hexadecimal; and a percent sign (%) indicates binary.
In all cases, the digits following k must be valid for the base denoted
by k. The value of number can be in the range -2**15 to +2**15 - 1,
inclusive; that is, it must be a number that can be represented by 15
bits plus a sign bit.

When L follows the number, it indicates that a 32-bit (double
precision) constant is to be generated. This enables values of number
in the range -2**31 to +2**31 - 1, inclusive — numbers that can be
represented by 31 bits plus a sign bit. label is assigned the address
of the leftmost halfword.

Whether the L is used or not, no error message is generated if the
limiting values are exceeded; the assembler discards the high-order
b i t s .

The characters 0, X' and ^ can be used in place of the symbols
described above to designate the base of a constant as octal,
hexadecimal, and binary, respectively. When these designations are
used, the value specifications must be enclosed in single quotes (see
the examples below).

5 - 7 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

In teger cons tan ts a re a lways r igh t - jus t i fied in the i r s to rage
locations. If there are fewer than 16 significant bits in a constant
declared with the L option, they are stored in the rightmost halfword,
and the leftmost halfword is zero-filled. The partial assembly listing
shown below illustrates how integer constants can be generated.

000435> 000024 (0012) C08 DATA 20 dec ima l
000436> 000000 (0013) DATA 20L
000437> 000024
000440> 177760 (0014) DATA O ' - 2 0 ' o c t a l
000441> 000000 (0015) DATA ' 2 0 L
000442> 000020
000443> 000040 (0016) DATA X ' 2 0 ' hex
000444> 177777 (0017) DATA $-20L
000445> 177740
000446> 000064 (0018) DATA B'110100 ' b i n a r y
000447> 177777 (0019) DATA %-110100L
000450> 177714

Fixed Point Constants and Scaling: Noninteger decimal constants can be
specified by using a binary scal ing technique. Binary scal ing
indicates the location of an implied binary point after a specified bit
in the binary representation of the decimal constant. It is used in a
DATA statement of the following form:

[label] DATA nBm

where n is a decimal number that may include a decimal point, B
represents one to four occurrences of the letter B, and m is the scale
f a c t o r.

The following examples show some data declarations
octal and binary representations.

and the result ing

Constant Octal Representation Bit Pattern

123B15
123.5BB15
123B7
123.5B7
0.5B0

000173
000173 100000
075400
075600
040000

0000000001111011.
0000000001111011.1000000000000000
01111011.00000000
01111011.10000000
0.100000000000000

In these examples, the B indicates that scaling is in effect, and the
number following it (the scale factor) specifies the bit position of
the implied binary point. The first bit of the binary string is the
sign bit.

Second Edition 5-8

CONSTANT DEFINITION PSEUDO-OPERATIONS

Single, double, triple, and quadruple precision can be specified by
using 1, 2, 3, or 4 Bs, respectively, to generate 16, 32, 48, and 64
bit binary equivalents of the decimal numbers.

The assembler generates an error message if the number of bits to the
left of the binary point is not sufficient to contain the integer part
of the constant. A scaling factor greater than the number of available
bits (for example, B18) results in right-end truncation of the
generated constant (123B18 results in 000017 octal) with no assembler
error indication. The notation BB18 would supply sufficient bits for
the truncated portion to be carried over into the second 16 bits.

Floating Point Constants: The DATA statement is used to generate
single (32-bit), double (64-bit), and quad (128-bit) precision floating
point constants. The three forms are shown below.

[l a b e l] D ATA n u m b e r [E [-] e x p] s i n g l e p r e c i s i o n
[l a b e l] D ATA n u m b e r D [-] e x p d o u b l e p r e c i s i o n
[l a b e l] D ATA n u m b e r Q [-] e x p q u a d p r e c i s i o n

For single precision floating point numbers, either a decimal point or
the E notation must be present. They can also be used together. If
the E notation is absent, number must include a decimal point. Whether
to use a decimal point when the E notation is present depends on how
the number and its exponent are represented. Thus, the single
precision floating point integer 123 can be represented as 123.,
.123E3, 1.23E2, 12.3E1, 123E0, 1230.E-1, and so on. Double and quad
precision numbers must always use the D and Q notations, respectively.

For a description of how floating point numbers are represented in the
floating point registers and in memory, refer to Chapter 6 of the
System Architecture Reference Guide.

^ [label] DEC numeric-constant[,...]

The DEC pseudo-operation defines numeric constants. It operates in
precisely the same way as the DATA statement with numeric operands, and
all but one of the numeric formats accepted by the DATA statement can
be used with DEC. The exception is the multiple-occurrence form of
operand, n(number).

^ [label] HEX hexadecimal-constant[L][,...]

The HEX pseudo-operation defines hexadecimal integers by converting the
hexadecimal representation in the operand to 16-bit integer values.
The effect is the same as using a DATA pseudo-operation with a $number
operand.

5 - 9 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

In the absence of the L qualifier, the assembler generates a 16-bit
constant whose value can range between -2**15 and +2**15 - 1,
inclusive. This corresponds to hexadecimal values between -8000 and
+7FFF. If the L qualifier is present, a 32-bit constant is generated.
Its value can be between -2**31 and +2**31 - 1 (hexadecimal -80000000
and +7FFFFFFF), inclusive. In either case, no error message is
generated if these values are exceeded; the assembler discards the
high-order bits.

▶ [label] OCT octal-constant[L] [,...]

The OCT pseudo-operations defines octal integers by converting the
octal representation in the operand to 16-bit integer values. The
effect is the same as using a DATA pseudo-operation with a 'number
operand.

In the absence of the L qualifier, the assembler generates a 16-bit
constant whose value can range between -2**15 and +2**15 - 1,
inclusive. This corresponds to octal values between -100000 and
+77777. If the L qualifier is present, a 32-bit constant is generated.
Its value can be between -2**31 and +2**31 - 1 (octal -20000000000 and
+17777777777), inclusive. In either case, no error message is
generated if these values are exceeded; the assembler discards the
high-order bits.

^ [label] VFD size-1,value-1[,size-2,value-2]. . .

The VFD pseudo-operation permits a 16-bit halfword to be formed with
subfields of varying length. In the operand pairs, size-n gives the
subfield size in bits, and value-n gives the value. size is expressed
as a decimal integer. value can be specified as decimal, octal,
hexadecimal, binary, or character, specified as for a DATA statement.
Thus, the following is a valid VFD statement:

[label] VFD 3,6,8,R'A',5,' 12

The first size/value pair represents the most signficant (leftmost)
subfield; subsequent size/value pairs load less significant subfields
of the 16-bit halfword. For any subfield, if the binary equivalent of
its value will not fit into its specified subfield size, the leftmost
overflow bits are dropped. No error message is generated. If the
entire halfword is not specified, the least significant bits are
z e r o - fi l l e d .

An error message results if the sum of the subfield sizes exceeds 16
b i t s .

S e c o n d E d i t i o n 5 - 1 0

CONSTANT DEFINITION PSEUDO-OPERATIONS

LITERAL CONTROL PSEUDO-OPERATIONS (LT)

This group of pseudo-operations governs the placement of literals in
the assembled program. See also the description of the END
pseudo-operation, described under Assembly Control Pseudo-Operations in
Chapter 4.

N a m e F u n c t i o n

F I N I n s e r t l i t e r a l s

R L I T O p t i m i z e l i t e r a l s

^ [label] FIN

The FIN pseudo-operation controls the placement of literal pools. All
literals defined since an RLIT statement, the start of the program, or
the last FIN statement, are assembled into a literal pool starting at
the current location. label takes the address and mode of this
location. Processing of subsequent statements begins at the location
following the last literal in the current pool.

By using FIN, you can distribute literals (especially those defined in
short form instructions) throughout the procedure segment of a program
to keep them within range of their defining instructions, thus reducing
the number of out-of-range indirect address pointers that the loader
must create to access them. (The direct addressing range of short form
inst ruct ions is f rom -224 to +255 locat ions re lat ive to the
instruction's location. The l inker generates indirect pointers for
addresses outside this range.)

Each time a FIN is encountered, the assembler closes one literal pool
and opens a new one. This means that two identically-valued literals
defined before a FIN statement are allocated at the same memory
address, while two such literals, one defined before and the other
after a FIN statement, are allocated different memory addresses.

Be careful, when using the FIN statement, that you end the preceding
executable code with a control transfer instruction such as a jump or
branch; otherwise the program will attempt to interpret the data in
the literal pool as instructions, and will very likely produce a
run-time error condition.

^ RL IT

The RLIT pseudo-operation, if used, must appear immediately after the
initial SEG or SEGR statement in a program. In the absence of an RLIT
statement, all literals are placed in the linkage segment.

5 - 1 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The presence of an RLIT statement causes all literals to be placed in
the procedure segment. The FIN statement controls their location
within the procedure segment as described in the previous section.

RLIT and FIN statements interact in the following way.

If RLIT is specified and a FIN occurs while in linkage-relative
mode, the FIN will act as if the following sequence had been coded
(only the FIN is actually generated):

PROC switch to procedure-relat ive mode
FIN put l i terals in the procedure segment
L INK res to re the l i nkage- re la t i ve mode

Correspondingly, if RLIT is not specified and a FIN occurs while in
procedure-relative mode, the FIN will act as if the following
sequence had been coded (only the FIN is actually generated) :

L INK sw i tch to l i nkage- re la t i ve mode
FIN put l i tera ls in the l inkage segment
PROC restore the procedure-relat ive mode

STORAGE ALLOCATION PSEUDO-OPERATIONS (SA)

This group of pseudo-operations allocates storage without (except in
one case) assigning initial values to the storage locations. They can
be thought of as simply reserving a certain amount of space for future
data storage. They are typically used to reserve buffer space for
input and output operations.

Your program should never rely on the initial contents of uninitialized
memory. Any data using uninitialized storage should be put there by
the program itself, either by reading into it from an external medium
or by executing instructions which explicitly store into it.

The following pseudo-operations constitute the storage allocation
statements.

N a m e F u n c t i o n

BSS Al locate b lock s tar t ing wi th symbol

BES Al locate block ending with symbol

BSZ Allocate block and set to zeroes

COMM FORTRAN (FTN and F77) compatible COMMON

S e c o n d E d i t i o n 5 - 1 2

CONSTANT DEFINITION PSEUDO-OPERATIONS

BSS
^- [label] BES absolute-expression

BSZ

Each of these pseudo-operations allocates a block of halfwords of the
size specified by absolute-expression, starting at the current location
count. If there is a label, BSS and BSZ assign it to the first
halfword of the block; BES assigns it to the location following the
last halfword of the block. BSZ, in addition to allocating space for
the block, initializes the block to all zero bits.

Since storage allocated by these statements is almost invariably meant
to be written into (that is, modified by the program), the statements
should never be coded in a pure procedure segment. They should appear
either in a linkage segment or in a procedure segment that is
designated as impure (see the description of the SEG or SEGR
pseudo-operation in Chapter 4).

^ [label] COMM symbol [(absolute-expression)]

Defines FORTRAN-compatible named COMMON areas. These areas are
allocated by the linker. label assigns a name to the block as a whole,
while symbol specifies named variables or arrays within the block.
Additional COMM statements with the same block name are treated as
continuations of the block. symbol alone reserves a single location;
the optional (absolute-expression) reserves a number of locations equal
to its value. The loader creates in the linkage segment a 32-bit
indirect pointer which points to the common area.

The COMM statement must appear before any statement that generates
code, either in the procedure segment or in the linkage segment. It
should immediately follow the SEG or SEGR statement, or the RLIT
statement, if there is one.

5 - 1 3 S e c o n d E d i t i o n

Loading and Linking
Pseudo-Operations

The pseudo-operations described in this chapter control the actions of
the linker during program linking and provide the mechanism by which
separately assembled or compiled programs can be identified and called
from the current program.

LOADER CONTROL PSEUDO-OPERATIONS (LO)

The loader control pseudo-operations provide control information for
t h e S E G l o a d e r o r B I N D l i n k e r. A d d r e s s i n g m o d e c o n t r o l
pseudo-operations (D64V, D32I) control the assembler memory reference
instruction processing as well as loader address resolution mode. Mode
commands entered during loading set only the loader's current mode, and
are overridden by mode control pseudo-operations in the program.

Incompatible instructions such as a 64V-mode instruction in 321 mode
are flagged by the assembler. The addressing mode of the program is
determined by the SEG or SEGR pseudo-operation, described in Chapter 4.

The DUII, LIR and CENT statements simplify the preparation of library
packages that automatical ly load instruction simulation modules
appropriate to the machine in which the code is to be executed.

6 - 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The following pseudo-operations provide the loader control functions

Name

CENT

D64V

D32I

DUII

ELM

LIR

Function

Conditional entry

Use 64V addressing mode

Use 321 addressing mode

Define UII

Enter loader mode

Load if required

^ CENT symbol

Provides a conditional ENT capability. The loader will load a module
containing a CENT only if something else in the module (such as an LIR)
directs it to load the module. This is true even if the module would
have been loaded by virtue of a match between symbol and an unresolved
external reference.

Typically, a module containing a
l i b r a r y.

CENT statement will be part of a

^ D64V

The D64V pseudo-operation directs the assembler and the linker to use
64V address resolution for the following instructions, even though a
SEGR pseudo-operation appears in the program. V-mode assembly
continues until a D32I statement is encountered, or to the end of the
program.

It is important to emphasize that this pseudo-operation affects only
the assembler and the linker; a corresponding machine instruction,
E64V, must accompany it to cause the execution mode to switch from I
mode to V mode. D64V/E64V sequence is commonly coded in the form

D64V:E64V

Second Edition 6-2

LOADING AND LINKING PSEUDO-OPERATIONS

^ D32I

The D32I pseudo-operation directs the assembler and the loader to use
321 address resolution, even though a SEG pseudo-operation appears in
the program. I-mode assembly continues until a D64V statement is
encountered, or to the end of the program.

It is important to emphasize that this pseudo-operation affects only
the assembler and the linker; a corresponding machine instruction,
E32I, must accompany it to cause the execution mode to switch from V
mode to I mode. D32I/E32I sequence is commonly coded in the form

D32I.E32I

^ DUII absolute-expression-1, absolute-expression-2

T h e D U I I p s e u d o - o p e r a t i o n d i r e c t s t h e l o a d i n g o f a n
u n i m p l e m e n t e d - i n s t r u c t i o n (U I I) e m u l a t i o n p a c k a g e . a b s o l u t e
expression-1 is a bit mask defining instruction sets that the UII
package emulates, and absolute-expression-2 is a bit mask defining
hardware instruction sets that must be present to execute the UII
package.

Bit number Meaning

1 - 9 M u s t b e 0

1 0 P r i m e 5 0 0

1 1 P r i m e 4 0 0

1 2 U n d e fi n e d

1 3 D o u b l e P r e c i s i o n F l o a t i n g P o i n t

1 4 S i n g l e P r e c i s i o n F l o a t i n g P o i n t

1 5 P r i m e 3 0 0 O n l y

1 6 H i g h S p e e d A r i t h m e t i c

^ ELM

The ELM pseudo-operation directs the loader to generate an enter
addressing mode instruction in the current loader addressing mode at
the current counter.

6 - 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

^ LIR absolute-expression

The LIR pseudo-operation controls library program loading. The program
will be loaded if any of the instruction groups specified have been
used in previously loaded code. absolute-expression is a bit mask,
defining instruction groups that are to cause loading. Bit assignments
are the same as for the DUII statement.

PROGRAM LINKING PSEUDO-OPERATIONS (PL)

This group of pseudo-operations governs the interaction between the
assembler and the loader in resolving address references between main
programs and external subroutines.

N a m e F u n c t i o n

C A L L E x t e r n a l s u b r o u t i n e c a l l

D Y N T D i r e c t e n t r a n c e c a l l

E C B D e fi n e e n t r y c o n t r o l b l o c k

E X T F l a g e x t e r n a l r e f e r e n c e

SUBR, ENT Define entry point

SYML Allow long (8-character) external names

^ [label] CALL symbol

The CALL pseudo-operation generates a PCL instruction that transfers
control to a location in an external program or subroutine. It
combines the functions of the PCL instruction, an EXT pseudo-operation,
and an IP pseudo-operation in that it identifies the name given in
symbol as an external label which the linker will use to resolve the
indirect pointer. Thus, CALL eliminates the need for an explicit EXT
statement to identify an external symbol, and for an explicit IP
statement to provide an indirect pointer, as would be required if the
PCL instruction itself were coded. Figure 12-1 in Chapter 12 shows the
differences in calling subroutines by the CALL method and the PCL
method.

^ DYNT entry-point-name

The DYNT pseudo-operation identifies a direct entrance point into a
subrout ine l ibrary. For entry points in Pr ime-suppl ied system
libraries, this statement is unnecessary; it is used only to define
entry points in user-created libraries. Its effect is to store the

Second Edition 6-4

LOADING AND LINKING PSEUDO-OPERATIONS

entry point name in the program, where it will be resolved into the
address of the entry point by the dynamic linking mechanism. Volume I
of the Advanced Programmer's Guide describes DYNTs and the dynamic
linking mechanism in detail.

^ [l a b e l] E C B e n t r y - p o i n t , [l i n k - b a s e] , [d i s p l a c e m e n t] ,
[n -arguments] , [s tack-s ize] , [keys]

The ECB pseudo-operation generates an entry control block by which
calling and called programs can communicate with each other. It must
appear in the link frame. label is the name of the ECB, by which the
program containing the ECB is called by a CALL statement in another
program. If this program is to be called from other than command
level, it must also have a SUBR or ENT statement (described later in
this section) whose operand is the ECB label.

The operand functions are described below.

O p e r a n d F u n c t i o n

entry-point Entry point in the procedure segment of the program.
It is the label of the first executable instruction
in the program.

l i n k - b a s e T h i s o p e r a n d i s n o t c u r r e n t l y u s e d . T h e c o m m a
fol lowing i t , however, must be inc luded i f more
operands fol low. The l ink base defaults to '-400
('177400) .

d isp lacement Used only if there are arguments to be passed to the
this program when it is called. It is the label of
an argument pointer defined in this program in the
operand field of a DYNM pseudo-operation (described
in Chapter 4) . I f only one argument is to be
passed, it is the label of that argument's pointer.
If more than one argument is to be passed, it is the
label o f the firs t o f these arguments ' po in ters .
A l l o f t h e a r g u m e n t p o i n t e r s m u s t a p p e a r a s
consecutive arguments in one or more consecutive
DYNM statements. (Other DYNM statements can be used
to define dynamic storage that is not related to
argument passing; these DYNMs must not intervene
between those used to pass arguments.)

n-arguments Number of arguments expected; th is number must
agree with the number of DYNM statements that define
the argument pointers. The default is zero.

r
r 6-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

stack-size Initial stack frame size. The default is sum of the
sizes specified in all DYNM statements, plus 10
(decimal) words for stack frame overhead.

k e y s C P U k e y s f o r p r o c e d u r e . T h e d e f a u l t i s 6 4 V
addressing mode ('14000) if the SEG pseudo-operation
was used, or 321 addressing mode ('10000) if the
SEGR pseudo-operation was used. Keys are discussed
in detail in Chapter 5 of the System Architecture
Reference Guide.

If the default value for any operand is desired, the operand can be
omitted, leaving only its trailing comma. Any string of trailing
commas can be omitted.

Note

Any program that is invoked from command level (that is, by the
SEG or RESUME command) is entered from SEG or RESUME via a PCL
instruction; the invoked program must therefore contain a
labeled ECB and must have the ECB label as the operand of its
END statement. It need not have an ENT or SUBR statement
because SEG and RESUME provide a dummy entry point name to a
program called in this way.

^ [l abe l] EXT symbo l

Identifies variables defined in external programs. The name appearing
in the operand of this statement is flagged as an external reference.
Whenever other statements in the main program reference one of these
names, a special block of object text is generated that notifies the
linker to supply the appropriate address. The assembler fills the
address fields with zeros.

An EXT statement is required if calls are made to an external program
through a PCL instruction in this program; it is not needed if a call
is made through a CALL pseudo-operation, since CALL implicitly performs
the processing of an EXT statement in addition to generating the PCL
i n s t r u c t i o n .

Names defined by symbol must be unique in the first 6 characters (8
characters if a SYML pseudo-operation appears in the program) and
should not appear as a label within the program.

S e c o n d E d i t i o n 6 - 6

LOADING AND LINKING PSEUDO-OPERATIONS

t [label] SUBR symbol-1[, symbol-2]
[label] ENT symbol-1[, symbol-2]

The SUBR or ENT pseudo-operation matches an entry point in a called
program to the label appearing in the operand field of a CALL, XAC or
EXT statement in a calling program. SUBR and ENT are identical in
e f f e c t .

symbol-1 and symbol-2 supply the names of the entry-point and the ECB
of the called program. The details of how this is done and when and
how to use the optional symbol-2 are discussed in Chapter 12.

^ SYML

The SYML pseudo-operation allows the declaration of external names up
to eight characters long. In the absence of this statement, external
names are limited to six characters (this is a linker restriction).

This statement, if used, must follow SEG or SEGR and precede any
generated code.

6 - 7 S e c o n d E d i t i o n

Macro Definition
Pseudo-Operations

This chapter describes a group of pseudo-operations used in coding
macro definition blocks. A macro definition block consists of a group
of statements — instructions and pseudo-operations — that can be
called repeatedly from anywhere outside the block; they are useful for
saving coding time and effort when the same sequence of statements must
be used more than once in a program.

The following pseudo-operations are described in this chapter:

Name Description

ENDM End a macro definition

MAC Begin a macro definition

SAY Print a message

SCT Select code within a macro

SCTL Select code from comparison list

See also the descriptions of the conditional assembly pseudo-operations
given in Chapter 4. Additional information on the definition and use
of macros is given in Chapter 11.

7-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

MACRO DEFINITION BLOCK

A macro definition block contains, in addition to ordinary statements,
pseudo-operations that are unique to macro definitions; they define
the beginning and end of the block, and provide a degree of logic in
the inclusion or rejection of subgroups of statements within the
definition block. These pseudo-operations are described in this
chapter; some other conditional assembly statements, which can be used
within or outside of macro definitions, are described in Chapter 4.

A macro definition always has a name; the macro is called by coding
that name in the operation field of an assembler statement. A
statement having a macro name in its operation field is known as a
macro call. If the macro expects arguments, argument values are coded
in the operand field of the call. These values are substituted for
argument references (strings of the form <number>) wherever they appear
in the macro definition block. For example, if it were frequently
necessary in a program to transfer one halfword of data from one memory
location to another, the following macro definition could be used.

TRANSFER MAC
LDA <1>
STA <2>
ENDM

Then, from anywhere else in the program (including from within another
macro definition block), the macro can be called by a statement such as

TRANSFER L0C_1, L0C__2

where L0C_1 and L0C_2 are labels on the source and destination data
items within the program. The integers enclosed in angle brackets are
the argument references. The numbers correspond to the positions of
the arguments in the macro call's operand field. During assembly they
are replaced by the argument values specified in the call. Thus, in
the example, <1> is replaced by L0C_1 and <2> is replaced by L0C_2.

The code for the call and the generated statements would appear in the
following form on the assembly listing (if LSTM is in effect — see
Chapter 4).

TRANSFER L0C_1,L0C_2
L D A L 0 C _ 1
S T A L 0 C _ 2

Optional dummy words and argument identifiers can be used to improve
readability and increase flexibility of argument positioning. These
are described in Chapter 11.

S e c o n d E d i t i o n 7 - 2

MACRO DEFINITION PSEUDO-OPERATIONS

A macro definition block must appear before any call to that macro.
Macro definition blocks can contain calls to other macros, provided the
called macro's definition block appears before the call to it. A macro
definit ion cannot, however, contain another macro definit ion; that is,
a MAC pseudo-operation cannot appear between another MAC and an ENDM
statement .

MACRO DEFINITION PSEUDO-OPERATIONS (MD)

^ ENDM

The ENDM pseudo-operation terminates a macro definition. ENDM must be
the last statement in a macro definition.

^ l a b e l M A C [d u m m y - w o r d , . . .] [a r g u m e n t - i d e n t i fi e r , . . .]

The MAC pseudo-operation begins the definition of the macro. Its name
is given in the label field. The name is formed in the same way as the
labe l on an i ns t ruc t i on o r pseudo -ope ra t i on . Fo l l ow ing the MAC
statement are statements that make up the macro defini t ion. The
definition ends with an ENDM statement.

^ [l a b e l] S AY A S C I I - e x p r e s s i o n

The SAY pseudo-operation defines a message which is printed starting in
column 1 of the listing. Normally, the SAY message is used within a
macro to generate error comments or other messages. An example of how
a SAY message appears in an assembly listing is shown in Figure 7-1.
Any argument references appearing within the message are replaced,
before the message is generated, by corresponding values given in the
macro call.

I f a l i s t ing dev ice i s ass igned, SAY s ta tements genera te ou tpu t
regardless of the status of the listing options. The PMA invocation
command ass igns the l is t ing device and some l is t ing opt ions, as
described in Chapter 2. Macro listing options are defined by listing
control pseudo-operat ions within a program; these are descr ibed in
Chapter 4.

^ [l a b e l] S C T a b s o l u t e - e x p r e s s i o n

The SCT pseudo-operation assembles selected code groups based on the
value of absolute-expression. The expression must be a constant or an
expression that can be evaluated as a single-precision number. It can
also be an argument reference (<n>). The argument value may be

7 - 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

positive or negative, with a range between -4000 and +4000
determines which code groups are asembled.

This value

No other SCT statements may appear within the control range; SCT
statements cannot be nested. It is possible, however, to call another
macro containing an SCT from within an SCT range.

Code Groups: Code under the control of an SCT statement must be in
groups delimited by one of four types of marker lines. Marker lines
have a percent symbol (%) in column 1, either by itself or followed by
a second character. Marker line functions are described below.

Marker Function

% Code group delimiter line. Increments code group count.
If the count matches the value of the SCT argument,
assemble from this marker to the next % marker or to the %/
marker, whichever occurs first.

%1 If any statements in the code group containing this marker
were assembled, continue assembly from this marker to the
next marker of any kind; then skip to the %/ marker if not
already there. %1 markers increment the code group count.

%2 If no statements between the SCT and this marker have been
assembled, assemble from this marker to the next marker of
any kind; then skip to the %/ marker if not already there.
%2 markers increment the code group count.

%/ End of control range for the current SCT.

The %2 marker is useful to identify a section of code that is to be
assembled if the argument value of the SCT statement is out of range.
When used in this way, it should be used only as the last code group in
an SCT range.

Function of the Expression Value: The value of the absolute expression
is essentially a counter pointing to a particular code group within the
range of the SCT statement. In the following example there are five
code groups, each consisting of one instruction. The first code group
is considered code group zero, and begins with the SCT statement; it
is not preceded by a % marker.

Second Edition 7-4

MACRO DEFINITION PSEUDO-OPERATIONS

LOAD MAC
SCT

%2

%/

<1>
L D A L O C _ 0 c o d e g r o u p 0

L D A L O C _ l c o d e g r o u p 1

L D A L O C _ 2 c o d e g r o u p 2

L D A L O C _ 3 c o d e g r o u p 3

L D A L 0 C _ 4 c o d e g r o u p 4

SAY ARGUMENT ERROR IN CALL TO 'LOAD' MACRO

ENDM

A call to the LOAD macro with a numeric value between 0 and 4 as its
first argument substitutes that value for the <1> in the SCT statement,
and causes the generation of the corresponding code group. An argument
value of 5 or greater causes the error message to be displayed. Figure
7-1 shows an assembly using an SCT statement.

A general description of assembler action for various argument values
is given below.

Argument Value

0

- n

Assembler Action

Assemble from the SCT statement to the first %
marker; then skip to the %/ line.

Skip to the first % marker; assemble from there
to the second % marker; then skip to the %/
marker.

Skip to the nth % marker, if any. Assemble from
there to marker n+1; then skip to the %/ marker.
If there is no nth % marker, proceed as for -n.

Skip to a %2 marker, if any, and assemble from
there to the next % marker; then skip to the %/
line. If there is no %2 marker, skip to the %/
l i n e .

7-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

^- [label] SCTL absolute-expression, argument-1, [argument-2,...]

The SCTL pseudo-operation assembles selected code groups. The result
of a comparison between absolute-expression and the items in the
a r g u m e n t l i s t c o n t r o l s t h e s e l e c t i o n o f t h e c o d e g r o u p .
absolute-expression and each item in the argument list must be an
expression that can be evaluated as a single-precision number. Any of
them can be (or contain) an argument reference (<n>).

The argument value may be positive or negative, with a range between
-32768 and +32767. This value determines which code group is
assembled. Code groups are defined as for the SCT statement, described
above.

No other SCTL statements may appear within the control range; SCTL
statements cannot be nested. It is possible, however, to call another
macro containing an SCTL from within an SCTL area.

Expression Comparison: The ordinal position in the argument list of
the argument that equals absolute-expression determines which code
group is selected.

E x p r e s s i o n C o m p a r i s o n S e l e c t i o n

absolute-expression = argument-1 code group 0

absolute-expression = argument-2 code group 1

absolute-expression = argument-n code group n-1

n o m a t c h s a m e a s S C T - n

The SCTL statement functions like the SCT statement, but uses argument
values rather than code group numbers to select code groups:

LOAD MAC
SCTL <1>, 15, 27, -3, 250, -99
LDA LOC_0

%
LDA LOC_l

%
LDA LOC_2

%
LDA LOC_3

%
LDA LOC_4

%2

%/
SAY ARGUMENT ERROR IN CALL TO 'LOAD' MACRO

ENDM

S e c o n d E d i t i o n 7 - 6

MACRO DEFINITION PSEUDO-OPERATIONS

The macro expects calls whose argument values match those in the
argument list of the SCTL statement in order to produce useful code.
If a call argument value does not match one of those in the list, the
error message is generated and no code is produced.

Assume that this macro is called with the statements

LOAD 27
LOAD -99
LOAD 17

For each LOAD call, the number 27, -99, or 17 is substituted for the
<1> in the SCTL statement. In the first LOAD call, the equality of the
argument value 27 with 27 in the SCTL argument list (argument 2)
results in the selection of code group 1; in the second call, equality
with argument 5 causes code group 4 to be selected. The third case
produces the error message because no match is found between 17 and any
of the items in the argument list.

Figure 7-2 shows an assembly listing using an SCTL statement. Note
that in the assemblies in both Figures 7-1 and 7-2, the same code
groups are selected; the selection method in each, however, is
d i f f e r e n t .

7 - 7 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

SEG
(0 0 0 1) S E G
(0002) LOAD MAC
(0 0 0 3) S C T < 1 >
(0 0 0 4) L D A L O C _ 0
(0005) %
(0 0 0 6) L D A L O C _ l
(0007) %
(0 0 0 8) L D A L O C _ 2
(0009) %
(0 0 1 0) L D A L O C _ 3
(0011) %
(0 0 1 2) L D A L O C _ 4
(0013) %2
(0014) SAY ARGUMENT ERROR IN MACRO CALL
(0015) %/
(0 0 1 6) E N D M
(0017) *
(0018) *

000000 (0019) ST EQU *
(0 0 2 0) L O A D 1

000000: 02.000400L (ML01) LDA LOC_l
(0 0 2 1) L O A D 4

000001: 02.000401L (ML01) LDA LOC_4
(0 0 2 2) L O A D 5

ARGUMENT ERROR IN MACRO CALL
0 0 0 0 0 2 : 0 0 0 6 1 1 (0 0 2 3) P R T N

(0 0 2 4) L I N K
000400> 000001 (0025) LOC_l DEC 1
000401> 000004 (0026) LOC_4 DEC 4
000402> 000000 (0027) ECB$ ECB ST

000012
000011
000000
177400
014000

0 0 0 4 2 2 (0 0 2 8) E N D E C B $

Example of SCT Pseudo-Operation
Figure 7-1

S e c o n d E d i t i o n 7 - 8

MACRO DEFINITION PSEUDO-OPERATIONS

SEG
(0001) SEG
(0002) LOAD MAC
(0003) SCTL <1>, 15, 27, -3, 250, -99
(0004) LDA LOC_0
(0005)
(0006) LDA LOC_l
(0007)
(0008) LDA LOC_2
(0009)
(0010) LDA LOC_3
(0011)
(0012) LDA LOC_4
(0013) %2
(0014) SAY ARGUMENT ERROR IN MACRO CALL
(0015) %/
(0016) ENDM
(0017)
(0018)

000000 (0019) ST EQU
(0020) LOAD 27

000000: 02.000400L (ML01) LDA LOC_l
(0021) LOAD -99

000001: 02.000401L (ML01) LDA LOC_4
(0022) LOAD 17

ARGUMENT ERROR IN MACRO CALL
000002: 000611 (0023)

(0024)
PRTN
LINK

000400> 000033 (0025) LOC_l DEC 27
000401> 177635 (0026) LOC_4 DEC -99
000402> 000000 (0027)

000012
000011
000000
177400
014000

ECB$ ECB ST

0 0 0 4 2 2 (0 0 2 8) END ECB$

Example of SCTL Pseudo-Operation
Figure 7-2

7-9 Second Edition

Machine Instructions - V Mode

This chapter describes the set of machine instructions that is
available to you when your program is executing in 64V addressing mode
(commonly referred to simply as V mode). It also describes the various
types of addressing usable in V mode, as well as the registers
available to V-mode programs.

TYPES OF ADDRESSING

V-mode programs use both short and long form instructions. Short form
(16-bit) instructions can address the first 256 halfwords of both the
stack and link segments, as well as 224 halfwords before and 255
halfwords after the current location in the procedure segment. Direct
long form (32-bit) instructions can address all locations in any
128-Kbyte segment pointed to by one of the four base registers;
indirect long form (32-bit) instructions can address all locations in
up to 40 96 128-Kbyte segments.

V-mode addresses at execution time (known as effective addresses) are
virtual addresses consisting of a segment number and an offset. The
offset identifies a particular halfword relative to the beginning of
the segment. Segment numbers and offsets are commonly represented (in
listings such as memory maps produced by linkers) as two octal numbers
separated by a slash:

4001/1025

l - l S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The offset of the first halfword in any segment is 0; therefore the
address shown above represents the (octal) 102 6th halfword in segment
(octal) 4001. Segmented addressing is fully described in the System
Architecture Reference Guide.

Segment numbers (at least in their resolved form) do not appear in an
assembly listing; generally only the offsets appear, with a code
indicating the type of segment in which they will eventually reside.
It is the linking operation performed by SEG or BIND that (among other
things) establishes segment numbers based on whether the data or
instruction in question is defined in a procedure, stack, or linkage
segment of the program. For information on program linking and how
segments are allocated, refer to the Seg and Load Reference Guide and
the Programmer's Guide to BIND and EPFs.

The assembler keeps track of segment information so that, when you use
a label as an operand in an instruction, you do not need to concern
yourself with specifying the segment in which that label was defined.

The processor hardware uses various components of an instruction to
decide which of four addressing forms to use in the instruction's
execution:

• D i rect

• Indexed

• Ind i rec t

• Indirect indexed

These addressing forms are summarized below. Detailed information on
addressing can be found in Chapter 3 of the System Architecture
Reference Guide.

Direct Addresses

A direct address is indicated by an operand of the form

LABEL1 [+1 - LABEL2 ... +|- LABELn]

The operand is an expression consisting of the simple symbolic name of
an element defined somewhere within the referencing segment, or a
combination of such names which, when combined arithmetically, yield a
single numeric displacement relative to the beginning, and within the
limits, of the segment. (Expressions and their evaluations are
described under TERMS AND EXPRESSIONS, in Chapter 3.) In certain
cases, you can also use absolute numbers or other literal values; the
assembler resolves them to displacements. The hardware, at execution
time, adds the displacement to the contents of the appropriate base
register (procedure, link, stack, or auxiliary) to form the effective
address.

S e c o n d E d i t i o n 8 - 2

MACHINE INSTRUCTIONS — V MODE

Indexed Address

An indexed address is indicated by an operand of the form

LABEL,X

Indexing provides a convenient way to address successive elements in a
table or to count iterations in a loop.

Here, LABEL is normally a single symbolic name whose displacement value
is determined as in direct addressing. The processor then adds this
displacement to the current contents of an index register (in this case
the X register), whose value must have been previously set by the
program. V-mode instructions can also use a second index register, the
Y register. (V-mode register usage is described later in this
chapter.) The result of the addition is the effective address.

Indirect Address

An indirect address is indicated by an operand of the form

LABEL,*

Indirect addresses enable a program to make a memory reference to a
location through an indirect pointer. A primary use of indirect
addressing is to refer to locations outside of the segment making the
reference. Prime processors pass arguments to subroutines by address
rather than by value. Therefore, subroutines (which frequently reside
outside their callers' segments and cannot access or be accessed by
their callers using direct addressing) must use indirect pointers to
communicate with their callers.

In an indirect address, LABEL is a single symbolic name whose
displacement value is determined as in direct addressing. However,
rather than using the resulting address directly as the target of the
operation, the processor interprets it as the address of a pointer
which, in turn, contains the address of the target. Only one level of
indirection is allowed in V-mode programs; that is, the contents of
the pointer cannot itself be an indirect address.

Since an indirect pointer is a 32-bit address, it can contain segment
as well as displacement information, and can thus address across
segment boundaries, which addresses that contain only displacement
information cannot do. Indirect pointers can also be 48 bit entities,
and are used when it is necessary to address specific bits within the
ta rge t .

Indirect operands normally cause the assembler to generate 32-bit (long
form) instructions, which expect 32-bit pointers, declared by using the
IP pseudo-operation. For some instructions, if the target is within
the same segment as the instruction (and can therefore be reached with
a short form instruction), you can generate a 16-bit indirect pointer

8 - 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

and force the generation of a matching short form instruction. You do
this by declaring the pointer using a DAC pseudo-operation and
appending a "#" to the operation code of the instruction:

Long form indirect ion Short form indirect ion

J M P L A B E L 1 , * J M P # L A B E L 2 , *

LABEL1 IP TARG_1 LABEL2 DAC TARG_2

The object represented by TARG_1 can be in any segment (including the
local segment); the object represented by TARG_2 must be within the
local segment. Furthermore, to be accessible to the short-form JMP#
instruction, LABEL2 must be within -224 and +255 halfwords of the JMP#
i n s t r u c t i o n .

The instruction summaries later in this chapter indicate which
instructions have short forms.

Indirect Indexed Address

Indirect indexed addresses take one of four forms, depending on whether
you use the X register or the Y register, and whether indexing is
performed before or after indirection:

L A B E L , X * p r e - i n d e x e d b y X
L A B E L , * X p o s t - i n d e x e d b y X
L A B E L , Y * p r e - i n d e x e d b y Y
L A B E L , * Y p o s t - i n d e x e d b y Y

In pre-indexing, the processor adds the contents of the index register
to the value of LABEL, and uses the result as an indirect address to
form the effective address. In post-indexing, the processor resolves
the indirect address of LABEL, then adds the index register contents to
it to form the effective address.

Each form of indirect indexed addressing has its usefulness in
particular situations. Pre-indexing is useful in stepping through a
table of addresses, as in the first of the following examples.
Post-indexing is used primarily in stepping through a table of data, as
in the second example.

S e c o n d E d i t i o n 8 - 4

MACHINE INSTRUCTIONS — V MODE

Example 1 (pre-indexed indirect)

SEG
START LDX =-8
LOOP LDA I P TA B + 8 , X *]

STA NUMBER
STX SAVEX
CALL TODEC
AP NUMBER,SL
CALL TONL
LDX SAVEX
BIX ADD2

ADD2 BIX LOOP

*
PRTN

LINK
IPTAB IP TEST1

IP TEST2
IP TEST3
IP TEST4

NUMBER BSS
SAVEX BSS
TEST3 DATA 11
TEST1 DATA 22
TEST2 DATA 33
TEST4 DATA 44
ECB$ ECB START

END ECB$

Example 2 (pos t - indexed ind i rec t)

pre-indexed through IP table to data

START
LOOP

TABLE
NUMBER
SAVEX
TAB
ECB$

SEG
RLIT
LDX
LDA
STA
STX
CALL
AP
CALL
LDX
BDX
PRTN

LINK
IP
BSS
BSS
DATA
ECB
END

=5
TABLE,*X
NUMBER
SAVEX
TODEC
NUMBER,SL
TONL
SAVEX
LOOP

TAB-1
1
1
1/ 3, 5, 7, 9
START
ECB$

post-indexed to table of data

r
r 1-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Both of these programs print out a list of data items, one per line.
The first accesses the items through a table of indirect pointers (IPs)
which in turn contain the addresses of the data items; the second
accesses the items in the data table itself. In both cases the tables
c o n s i s t o f e q u a l - l e n g t h e n t r i e s : i n t h e fi r s t t h e y a r e 3 2 - b i t
pointers, and in the second they are 16-bit constants. This accounts
for the difference in the number of increments (BIX) or decrements
(BDX) to the X register in each case (two in the first example and one
in the second).

The CALL statements generate procedure call (PCL) instructions, which
may destroy the contents of the X register (among others) if argument
passing is required (as it is for the calls to the TODEC subroutine).
The register must therefore be saved (STX) before the cal ls and
restored (LDX) after the calls.

REGISTER USAGE

The following registers are available to V-mode programs;
are given in bits.

t h e i r s i z e s

Reg is te r S i ze

DAC

QAC

16
16

32

32

X 16
Y 16
FARO 32
FLRO 32
FAR1 32
FLR1 32
FAC 64

64

128

PB 32
SB 32
LB 32
XB 32

Func t ion

Accumulator (high half of L register)
Extension to A Register (Low half of L
r e g i s t e r)
Concatenated A and B registers; opera
tions involving L overlay contents of A
and B, and vice versa
Extension to L register; used in double
precision mult iply and divide operat ions
Index register
Index register
Field address register 0
Field length register 0
Field address register 1
Field Length register 1
F l o a t i n g p o i n t a c c u m u l a t o r (s i n g l e
prec is ion) ; conca tena t ion o f FAR1 and
FLR1
F l o a t i n g p o i n t a c c u m u l a t o r (d o u b l e
prec is ion) ; concatenat ion o f FAR1 and
FLR1
F l o a t i n g p o i n t a c c u m u l a t o r (q u a d
precision); concatenation of FARO, FLRO,
FAR1 and FLRl
Procedure base register
Stack base register
Link base register
Auxi l iary base register

Second Edition 8-6

MACHINE INSTRUCTIONS — V MODE

The registers listed above are available to all V-mode programs,
executing in both ring 0 and ring 3. These, as well as others
available only to ring 0 programs, are described in the discussion of
user register files in Chapter 9 of the System Architecture Reference
Guide. If your program uses FAC, pay particular attention to the
discussion of overlap between floating point and field registers in
that chapter.

Saving and Restoring Registers

If your program uses PCL instructions (generated by CALL statements),
bear in mind that PCL may destroy the contents of the X, Y, and XB
registers. The code that is executed as a result of the CALL may use
other registers (such as A, B, E, FAC, L, and Y). It is therefore
prudent to provide for saving the contents of any registers whose
contents are established before the CALL and are required after the
call. You can do this easily by use of the register save (RSAV) and
register restore (RRST) instructions; refer to the System Architecture
Reference Guide for more information on saving and restoring registers.

Register Usage Between V Mode and I Mode

You should be aware that when your program switches from V mode to I
mode (as it might when calling a subroutine), there is a correspondence
between registers in the user register set in the two modes. For
example, the V-mode L register corresponds to I-mode general register 2
(GR2); the V-mode A and B registers correspond to the high and low
halves, respectively, of I-mode register GR2. Therefore, if your
V-mode program calls an I-mode subroutine and expects a result to be
available in the A register upon return from the subroutine, the
subroutine should load the return value in the high half of GR2 before
returning to its caller.

A complete list of user registers and their intermode correspondences
is given in the discussion of user register files in Chapter 9 of the
System Architecture Reference Guide.

8 - 7 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

THE V-MODE INSTRUCTION SET

This section briefly describes the instructions that you can use in
V-mode programs. Complete descriptions of all V-mode instructions can
be found, listed alphabetically, in Chapter 2 of the Instructions Sets
Guide.

V-mode instructions can be arranged in the following groups:

• Generic (accumulator, shift, and skip)

• Branch and jump

• Memory reference

• Decimal

• Floating point

• Character

• Process-related operations

• Restricted operations

Generic Instructions

The generic instruction group comprises three subgroups: accumulator
generic, shift generic, and skip generic. All are short form (16-bit)
i n s t r uc t i ons .

Accumulator Generic Instructions: This subgroup contains chiefly
instructions that manipulate the contents of the accumulator in various
ways and under various conditions. The accumulator is (rather loosely)
equivalent to the A register, and the terms are often used
interchangeably. To be strictly accurate, however, the A register
should be thought of as the high (leftmost) half of the L register;
any operation on the A register therefore affects the L register, and
vice versa. Operations on the B register, which is the low (rightmost)
half of the L register, also affect the L register, and vice versa.
The E register, referred to in several of the instructions described
below, is a 32-bit extension of the L register, and is used in double
precision (long) integer multiply and divide operations. The Keys
register contains information related to the current addressing mode,
the results of arithmetic and compare operations, overflow conditions,
and other indicators.

You will note, in the summaries below, that there are a number of
instructions that operate on the A register, but have no equivalents
that operate on the B register. You cannot, for example, complement

Second Edition

MACHINE INSTRUCTIONS — V MODE

the B register directly. If you need to perform such an operation, use
a sequence such as the following:

I A B I n t e r c h a n g e A a n d B
C M A C o m p l e m e n t A
I A B I n t e r c h a n g e A a n d B

The fo l lowing funct ional groups summar ize the accumulator gener ic
inst ruct ions. Inst ruct ions that per form more than one funct ion (for
example transfer and clear) may appear in more than one group.

ACCUMULATOR INCREMENT/DECREMENT OPERATIONS

A 1 A A d d 1 t o A
A 2 A A d d 2 t o A
S I A S u b t r a c t 1 f r o m A
S 2 A S u b t r a c t 2 f r o m A

ACCUMULATOR CLEAR OPERATIONS

CRA
CRB
CRE
CRL
CRLE
XCA Exchange A and B; clear A to zero
XCB Exchange A and B; clear B to zero

ACCUMULATOR TRANSFER OPERATIONS

I A B I n t e r c h a n g e A a n d B
I L E I n t e r c h a n g e L a n d E
TAB
TAK
TAX
TAY
TBA
TKA
TXA
TYA
XCA Exchange A and B; clear A to zero
XCB Exchange A and B; clear B to zero

Clear to zero
Clear to zero
Clear to zero
Clear to zero
Clear and E to zero

Transfer A to B
Transfer A to Keys register
Transfer A to X
Transfer A to Y
Transfer B to A
Transfer Keys register to A
Transfer X to A
Transfer Y to A
Exchange A and B; clear A to

1 - 9 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

ACCUMULATOR BYTE OPERATIONS

CAL
CAR
ICA
ICL
ICR

Clear left byte of A to zero
Clear right byte of A to zero
Interchange bytes of A
Interchange bytes of A; clear left byte to zero
Interchange bytes of A; clear right byte to zero

ACCUMULATOR COMPLEMENT OPERATIONS

CMA
TCA
TCL

One's-complement A
Two's-complement A
Two's-complement L

ACCUMULATOR SIGN OPERATIONS

CHS
CSA

SSM
SSP

Change sign (complement bit 1) of A
Copy sign (bit 1) of A to C bit of

clear bit 1 of A to zero
Set sign (bit 1) of A to 1
Set sign (bit 1) of A to 0

K e y s r e g i s t e r ;

OPERATIONS WITH KEYS REGISTER

ACA
ADLL
CSA

RCB
SCB
TAK
TKA

Add C bit of Keys register to bit 16 of
Add L bit of Keys register to bit 32 of
Copy sign (bit 1) of A to C bit of

clear bit 1 of A to zero
Reset C bit of Keys register to 0
Set C bit of Keys register to 1
Transfer A to Keys register
Transfer Keys register to A

Keys r e g i s t e r ,

LOGIC OPERATIONS

Set t o " f a l se " (0)
Set t o " t rue " (1)

CONDITION CODE TEST AND SET

LCEQ Set A to
LCGE Set A to
LCGT Set A to
LCLE Set A to
LCLT Set A to
LCNE Set A to

if condition code EQ;
if condition code GE;
if condition code GT;
if condition code LE;
if condition code LT;
if condition code NE;

else set A to 0
else set A to 0
else set A to 0
else set A to 0
else set A to 0
else set A to 0

Second Edition 8-10

MACHINE INSTRUCTIONS — V MODE

A REGISTER VALUE TEST AND SET

LEQ Set A to i f A = 0;
LGE Set A to i f A >= 0;
LGT Set A to i f A > 0;
LLE Set A to i f A <= 0;
LLT Set A to i f A < 0;
LNE Set A to i f A <> 0;

else set A to 0
else set A to 0

else set A to 0
else set A to 0

else set A to 0
else set A to 0

L REGISTER VALUE TEST AND SET

LLEQ Set A to i f = 0;
LLGE Set A to i f >= 0;
LLGT Set A to i f > 0;
LLLE Set A to i f <= 0;
LLLT Set A to i f < 0;
LLNE Set A to i f <> 0;

else set A to 0
else set A to 0

else set A to 0
else set A to 0

else set A to 0
else set A to 0

FLOATING ACCUMULATOR VALUE TEST AND SET

LFEQ Set A to i f FAC = 0;
LFGE Set A to i f FAC >= 0
LFGT Set A to i f FAC > 0;
LFLE Set A to i f FAC <= 0
LFLT Set A to i f FAC < 0;
LFNE Set A to i f FAC <> 0

else set A to 0
else set A to 0

else set A to 0
else set A to 0

else set A to 0
else set A to 0

Shi f t Gener ic Inst ruct ions: This subgroup conta ins inst ruct ions that
shift the contents of the A or L register a specified number of bits
l e f twa rd o r r i gh twa rd . The re a re t h ree t ypes o f sh i f t s : l og i ca l ,
rotate, and ar i thmetic.

Logical shifts move the register contents a specified number of bits in
a specified direction, storing each bit shifted out in the C bit and
LINK (bits 1 and 3) of the Keys register. Since only one bit is
available for storage, only the last bit shifted is available for use
in subsequen t ope ra t i ons ; a l l i n te rven ing b i t s a re l os t . Le f twa rd
sh i f ts are zero-fi l led on the r ight ; r igh tward sh i f ts are zero-fi l led
on the left.

Rotate shifts move the register contents a specified number of bits in
a specified direction, storing each bit shifted out in the C bit and
LINK (bits 1 and 3) of the Keys register, and also copying the bit to
the opposite end of the register. Thus, in a leftward shift, each bit
shifted out is reproduced at the r ight end of the register; in a
rightward shift, each bit shifted out is reproduced at the left end of
t h e r e g i s t e r. O n l y t h e l a s t b i t s h i f t e d i s s t o r e d i n t h e K e y s
r e g i s t e r .

Arithmetic shifts move the register contents a specified number of bits
in a specified direct ion.

1-11 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

For a leftward arithmetic shift, bits shifted out are lost, and bits on
the r ight end are zero-fil led. The C bit of the Keys register is
initially set to zero. If the shift causes a sign change (bit 1 of the
register changes from 0 to 1 or from 1 to 0), the C bit is set to 1.

For a rightward arithmetic shift, each bit shifted out is stored in the
C bit and LINK (bits 1 and 3) of the Keys register. The sign bit is
propagated to the right. That is, if the original value of bit 1 is
zero, the left-end bits are zero-fil led; i f the original value of bit
1 is one, the left-end bits are one-filled.

T h e f o l l o w i n g f u n c t i o n a l g r o u p s s u m m a r i z e t h e s h i f t g e n e r i c
i n s t r u c t i o n s .

LOGICAL SHIFT OPERATIONS

ALL n Log ica l sh i f t A le f t n b i t s
ARL n Log ica l sh i f t A r ight n b i ts
LLL n Log ica l sh i f t L l e f t n b i t s
LRL n Log ica l sh i f t L r igh t n b i ts

ROTATE SHIFT OPERATIONS

ALR n Rotate shi f t A le f t n b i ts
ARR n Rotate shi f t A r ight n bi ts
LLR n Rotate sh i f t L le f t n b i ts
LRR n Rotate shi f t L r ight n bi ts

ARITHMETIC SHIFT OPERATIONS

ALS n Ar i thmet i c sh i f t A le f t n b i t s
ARS n Ar i thmet ic sh i f t A r igh t n b i ts
LLS n A r i t hme t i c sh i f t L l e f t n b i t s
LRS n Ar i thmet ic sh i f t L r igh t n b i ts

Skip Gener ic Inst ruct ions: Skip inst ruct ions (and branch and jump
i n s t r u c t i o n s , d e s c r i b e d l a t e r i n t h i s c h a p t e r) a l t e r t h e n o r m a l
sequential flow of control in a program. Skip instructions test some
condition and skip if the tested condition is true.

Most skip instructions test for a true or false condition and skip zero
or one halfword, but some can skip zero, one, or two halfwords, based
on the resu l t o f a tes t fo r a greater - than, equa l , o r less- than
condit ion. The latter are typical ly fol lowed by two short-form jump
(JMP#) instructions and a third instruction of any type. The two jump
instructions transfer control to code that handles two of the tested
cond i t i ons ; t he th i rd i ns t ruc t i on hand les the rema in ing cond i t i on .
(Refer to the descript ion of the JMP instruct ion, below, for val id
destinations of short form jumps.) The fol lowing example i l lustrates
the technique.

S e c o n d E d i t i o n 8 - 1 2

~ >

MACHINE INSTRUCTIONS — V MODE

C A Z C o m p a r e A r e g i s t e r t o z e r o
JMP# addr_l Process A > 0 condition
JMP# addr_2 Process A = 0 condition
< i n s t > P r o c e s s A < 0 c o n d i t i o n

It is most important to remember, when using skip instructions, that
the instructions skip halfwords (16 bits), not instructions. Therefore
only short-form instructions (or instructions that can be forced to
short form, such as the JMP# instructions illustrated above) should
follow any of the skip generic instructions.

The fo l low ing func t iona l g roups summar ize the sk ip gener ic
i ns t ruc t i ons .

TEST ACCUMULATOR AND SKIP 1 HALFWORD

SAR n Skip if bit n of A = 0; n is a number from 1 through
16

SAS n Skip if bit n of A = 1; n is a number from 1 through
16

SGT Skip i f A > 0
SKP Generic skip (see Instruction Sets Guide)
SLE Skip i f A <= 0
SLN Skip if bit 16 of A = 1
SLZ Skip if bit 16 of A = 0
SMI Skip i f A < 0 (bi t 1=1)
SNZ Skip i f A <> 0
SPL Skip if A >= 0 (bit 1=0)
SZE Sk ip i f A = 0

COMPARE ACCUMULATOR AND SKIP 0, 1, OR 2 HALFWORDS

CAZ Compare A to zero and skip:
0 halfwords if A > 0
1 halfword if A = 0
2 halfwords if A < 0

INCREMENT/DECREMENT X REGISTER AND SKIP 1 HALFWORD

IRX Add 1 to X; skip if X = 0
DRX Subtract 1 from X; skip if X = 0

TEST C BIT OF KEYS REGISTER AND SKIP 1 HALFWORD

SRC Skip if C bit = 0
SSC Skip if C bit = 1r

r 8- 1 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Branch Instructions

Branch instructions, like the skip instructions just described, alter
the normal sequential flow of control in a program. Branch
instructions can test the following conditions and transfer control to
a specifed address if the tested condition is true:

• Contents of the accumulator (A register) with respect to zero

• Contents of the L register with respect to zero

• Contents of the floating accumulator (FAC) with respect to zero

• State of the condition codes (CC)

• State of the C bit of the Keys register

• State of the L bit of the Keys register and condition codes
(magnitude)

• Contents of the X or Y register with respect to zero after
incrementing or decrementing

Branch instructions can accept only direct addresses. Therefore, they
can transfer control only to locations within the same segment as
themselves. Jump instructions, described later in this chapter, can
transfer control to other segments through indexing or indirection (as
well as to their own segments through direct addressing).

The following functional groups summarize the branch instructions. All
are long form instructions.

BRANCH ON ACCUMULATOR WITH RESPECT TO ZERO

BEQ addr Branch to addr if A = 0
BGE addr Branch to addr if A >= 0
BGT addr Branch to addr if A > 0
BLE addr Branch to addr if A <= 0
BLT addr Branch to addr if A < 0
BNE addr Branch to addr if A <> 0

BRANCH ON L REGISTER WITH RESPECT TO ZERO

BLEQ addr Branch to addr if L = 0
BLGE addr Branch to addr if L >= 0
BLGT addr Branch to addr if L > 0
BLLE addr Branch to addr if L <= 0
BLLT addr Branch to addr if L < 0
BLNE addr Branch to addr if L <> 0

Second Edition 8-14

MACHINE INSTRUCTIONS — V MODE

BRANCH ON FLOATING ACCUMULATOR WITH RESPECT TO ZERO

BFEQ addr Branch to addr if FAC = 0
BFGE addr Branch to addr if FAC >= 0
BFGT addr Branch to addr if FAC > 0
BFLE addr Branch to addr if FAC <= 0
BFLT addr Branch to addr if FAC < 0
BFNE addr Branch to addr if FAC <> 0

BRANCH ON CONDITION CODE IN KEYS REGISTER

BCEQ addr Branch to addr if EQ bit = 1
BCGE addr Branch to addr if LT bit =
BCGT addr Branch to addr if LT bit =
BCLE addr Branch to addr if LT bit =
BCLT addr Branch to addr if LT bit =
BCNE addr Branch to addr if EQ bit =

0 or EQ bit = 1
0 and EQ bit = 0
1 or EQ bit = 1
1 and EQ bit = 0
0

BRANCH ON MAGNITUDE CONDITION

BMEQ addr Branch to addr if EQ bit = 1 (same as BCEQ)
BMGE addr Branch to addr if L bit = 1 (same as BLS)
BMGT addr Branch to addr if L bit = 1 and EQ bit = 0
BMLE addr Branch to addr if L bit = 0 and EQ bit = 1
BMLT addr Branch to addr if L bit = 0 (same as BLR)
BMNE addr Branch to addr if EQ bit = 0 (same as BCNE)

BRANCH ON STATE OF C/L BIT OF KEYS REGISTER

BCR addr Branch to addr if
BCS addr Branch to addr if
BLR addr Branch to addr if
BLS addr Branch to addr if

C bit = 0
C bit = 1
L bit = 0
L bit = 1

BRANCH ON X/Y REGISTER AFTER INCREMENT/DECREMENT

BDX addr Decrement by
BDY addr Decrement by
BIX addr Increment by
BIY addr Increment by

branch to addr if not zero
branch to addr if not zero
branch to addr if not zero
branch to addr if not zero

8-15 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Computed Go To Instruction

The computed go to (CGT) instruction is a multi-directional form of
branch instruction, capable of transferring control to any of several
destination addresses in the same segment as the CGT instruction
itself, depending on a preset value in the A register. It is
functionally identical to a FORTRAN computed GO TO statement. A
typical sequence is:

LDA destination_number
CGT
DATA number_of_destinations
DAC destination_l
DAC destination_2

DAC destination_n
ins t ruc t i on

Let n be the number of addresses at which processing can continue. In
this sequence, the LDA instruction (or any other instruction or series
of instructions that establish a value in the A register) loads the A
register with a destination__number between 1 and n, inclusive,
depending on which of the destinations control is to be transferred to.
The DATA statement defines the number of valid destinations, plus 1 to ^^
account for invalid A register settings. Thus, if there are 4 valid A
addresses at which processing can continue, the value of the
number_of_destinations operand is 5. If the value in the A register
i s , say, 2 , t hen the CGT ins t ruc t i on t r ans fe rs con t ro l t o
destination_2. An invalid value in the A register (a value less than 1
or greater than number—of_destinations - 1) transfers control to
instruction to perform error processing.

The destination addresses must be in the local segment, and must be
specified as short (16-bi t) addresses; hence the use of a DAC _
pseudo-operation. Refer to Chapter 5 for a description of the DAC ^
pseudo-operation.

Instruction can be any statement that generates a machine instruction.
For example, it could be a CALL statement to a subroutine that prints
an error message and then exits the program.

Jump Instructions

V-mode programs can use any of five jump instructions to alter the
normal sequence of control. They are all unconditional transfers;
they are independent of any previous test conditions. Four of them are
jump-and-store instructions, normally used to transfer control to
subroutines from which control is expected to return to the code
following the jump instruction. (Refer to Chapter 12 for a discussion

S e c o n d E d i t i o n 8 - 1 6

MACHINE INSTRUCTIONS — V MODE

of subroutine calling.) The remaining one is a one-way jump to code
from which no return is expected.

One-way Jump Instruction: A one-way jump instruction is used whenever
a control transfer without a subsequent return is required. One of its
typical uses is to return from a subroutine to which control has been
transferred by one of the four jump-and-store instructions.

The assembler generates a jump instruction in either short or long
form, depending on its operand. The short form results for any of the
following cases:

r
JMP LABEL
JMP *+nn
JMP *-nn
JMP LABEL,X
JMP PB%,X

(to LABEL, in the current segment)
(nn halfwords after current program counter)
(nn halfwords before current program counter)
(to LABEL, in the current segment, indexed by X)
(to address in PB register, indexed by X)

JMP with any other form of operand (that is, indirect, indirect
indexed, indexed by Y, or any form of XB-relative or SB-relative)
generates the long form.

With some operands, jump instructions that are normally generated in
long form can be forced to short form by using the JMP# form of the
mnemonic operation code. These forced short-form jumps, together with
those itemized above, are the ones that should be used after a
three-way skip instruction such as CAZ or CAS. Short-form jumps can be
forced with the following operands (LABEL must be within -224 and +255
halfwords of the JMP# instruction).

JMP# LABEL,*
JMP# LABEL,*X
JMP# LABEL,X*
JMP# PB%,*
JMP# PB%,X
JMP# PB%,*X
JMP# PB%,X*

(LABEL, in the current segment, indirect)
(LABEL, indirect, post-indexed by X)
(LABEL, indirect, pre-indexed by X)
(procedure base, indirect)
(procedure base, indexed by X)
(procedure base, post-indexed by X)
(procedure base, pre-indexed by X)

Jump-and-Store Instructions: Each jump-and-store instruction stores a
return address in a specific place (see the descriptions below); the
code to which control is transferred must therefore know which form of
jump was used to transfer to it so that it can make the appropriate
return. The four jump-and-store instructions and their storage and
return mechanisms are summarized below. (Further details are given in
the Instruction Sets Guide.)

1-17 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

JST and JSY are generated as either short or long form, depending on
their operands. They can, for some operands, be forced to short form
by appending "#" to the operation code (see the description of the JMP
instruction, above).

JST[#] addr Store the address following the JST in addr. Jump
to addr + 1. Return by JMP addr,*.

JST can jump only to a location in the local
segment. Since it modifies addr, a location within
the segment, it cannot be used in a shared (pure
code) segment.

JSX addr Store the address following the JSX in the X
register. Jump to addr. Return by JMP PB%,X.

JSX can jump only to a location in the local
segment. It can be used in shared segments, since
it does not modify a location in the segment. addr
cannot be indexed.

JSXB addr Store the address following the JSXB in the
auxiliary base (XB) register. Jump to addr. Return
by JMP XB%.

JSXB can jump to nonlocal segments as well as to the
local segment. It can be used in shared segments,
since it does not modify a location in the segment.

JSY[#] addr Store the address following the JSY in the Y
register. Jump to addr. Return by JMP PB%,Y.

JSY can jump only to a location in the local
segment. It can be used in shared segments, since
it does not modify a location in the segment.

S e c o n d E d i t i o n 8 - 1 8

MACHINE INSTRUCTIONS — V MODE

Memory Reference Instructions

This section describes a group of instructions that can refer to or
modify the contents of memory locations; that is, they can read from
and write to memory.

Because the memory reference instruction group comprises a large number
of instructions, their descriptions are divided into several subgroups:

• Memory/register t ransfer operat ions

• Memory/register logic operat ions

• Memory test and skip operations

• In teger opera t ions

• Decimal operations

• Float ing point operat ions

• Character and field operations

Al l memory reference instruct ions described in this sect ion are by
default long (32-bit) instructions. Some, however, can be forced to
short (16-bi t) form by using the "#" designator descr ibed in the
previous sect ion for JMP instruct ions. These are indicated in the
ins t ruc t ion l i s t s i n th i s sec t ion by " [#] " fo l l ow ing the mnemon ic
operation code.

Memory/Register Transfer Operat ions: The instruct ions in th is group
transfer the contents of a memory location to a register, or transfer
the contents of a register to a memory location. Also included here
are instructions that calculate an effective address and load it into a
r e g i s t e r .

8 - 1 9 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

MEMORY/REGISTER TRANSFER OPERATIONS

EAL addr
EALB addr
EAXB addr
IMA[#] addr
LDA[#] addr
LDL addr
LDLR addr

LDX[#] addr

LDY addr

RRST addr
RSAV addr
STA[#] addr
STAC addr

STL addr
STLC addr

STLR addr

STX[#] addr

STY addr

Load effective address into L register
Load effective address into link base register
Load effective address into auxil iary base register
Interchange memory and A register
Load 16 bits from memory into A register
Load 32 bits from memory into L register
Load from addressed register into L register (see

Instruction Sets Guide)
i n t o i n d e x

i n t o i n d e x

r e g i s t e r X ;

r e g i s t e r Y;

Load 16 bits from memory
addr cannot be indexed

Load 16 bits from memory
addr cannot be indexed

Restore user registers (see Instruction Sets Guide)
Save user registers (see Instruction Sets Guide)
Store 16 bits from A register into memory
If contents of B register equals contents of addr,

store 16 bits of A register into addr; (addr is
generated as a 32-bit address pointer)

Store 32 bits from L register into memory
If contents of E register equals contents of addr,

store 32 bits of L register into addr; (addr is
generated as a 32-bit address pointer)

Store L in to addressed reg is ter (see Ins t ruc t ion
Sets Guide)

Store index register X into memory;
indexed

Store index register Y into memory;
indexed

addr cannot be

addr cannot be

Memory /Reg is te r Log ic Opera t i ons : The i ns t ruc t i ons i n th i s g roup
perform logic operations on a register based on the contents of a
memory address.

MEMORY/REGISTER LOGIC OPERATIONS

ANA[#] addr Logical AND memory to A register
ANL addr Logical AND memory to L register
ERA[#] addr Exclusive OR memory to A register
ERL addr Exclusive OR memory to L register
ORA addr Inclusive OR memory to A register

Second Edition 8-20

MACHINE INSTRUCTIONS — V MODE

Memory Test and Skip Operations: The instructions in the fol lowing
group test a memory location in various ways, and skip or do not skip
based on the result.

r

CAS[#] addr

CLS addr

IRS[#] addr

MEMORY TEST AND SKIP OPERATIONS

Compare A register to memory and skip:
0 halfwords if A > memory
1 halfword if A = memory
2 halfwords if A < memory

Compare L register to memory and skip:
0 halfwords if L > memory
1 halfword if L = memory
2 halfwords if L < memory

Increment memory and skip if 0

In teger Opera t ions : The ins t ruc t ions in th is g roup per fo rm b inary
i n tege r a r i t hme t i c ope ra t i ons i nvo l v i ng a reg i s te r and a memory
locat ion. (Decimal and float ing point operat ions are descr ibed later
in this chapter.)

In all cases, one of the operands of the integer operation must have
been s to red i n t he app rop r i a te reg i s te r be fo re the ope ra t i on i s
performed. Use the posi t ioning instruct ions l isted below to properly
posit ion operands in the L and E registers before DIV and DVL
operations, and after MPY and MPL operations. See the Instruction Sets
Guide for details on how positioning is done.

Unless otherwise noted, the result of the operation is stored in the
register, not in the memory location. A store instruction (appropriate
to the register type) must follow the operation if the result is to be
used later and i f the same register (or part of i t) is used in
intervening operations. For example, an integer operation leaving its
result in the A register, followed by one leaving its result in the L
register, destroys the result in the A register, since A is the upper
half of L. An STA instruction should appear between the two integer
o p e r a t i o n s .

In some cases, consecutive, or chained, integer operations involving
•the same register or parts of a register are valid, provided the the
memory operands are of the correct length. For example, an algebraic
expression such as

Y = M * X + B

r
r 8-21 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

can be coded as the following instruction sequence

LDA M
MPY X
ADL B
PIMA
STA Y

M DATA
X DATA
B DATA 5 L
Y BSS

The DATA statements declare M and X as 16-bit quantities for the MPY
operation, and B as a 32-bit quantity for the ADL operation. The
result of the sequence (Y) is in the L register. The PIMA instruction
properly positions the result in the A register for further 16-bit
operations; omit the PIMA if subsequent operations involve 32-bit
quan t i t i es .

Exception conditions can occur for integer operations if the results
are outside the range of the result location. In an operation such as
the example above, if the result in the L register is greater than
+32767 or less than -32768, the PIMA instruction would cause an
overflow condition to be set. The Instruction Sets Guide describes,
for each instruction, the result l imits and the disposit ion of
exception conditions for that instruction.

POSITIONING OPERATIONS

P I D A P o s i t i o n b e f o r e i n t e g e r d i v i d e
P I D L P o s i t i o n b e f o r e l o n g i n t e g e r d i v i d e
P I M A P o s i t i o n a f t e r i n t e g e r m u l t i p l y
P I M L P o s i t i o n a f t e r l o n g i n t e g e r m u l t i p l y

S e c o n d E d i t i o n 8 - 2 2

MACHINE INSTRUCTIONS — V MODE

INTEGER ARITHMETIC OPERATIONS

ADD[#] addr Add 16-bit memory to A register
ADL addr Add 32-bit memory to L register
DIV[#] addr Divide 32-bit A/B register by 16-bit memory; 16-bit

quotient in A register, 16-bit remainder in B
reg i s te r

DVL addr Divide 64-bit L/E register by 32-bit memory; 32-bit
quotient in L register, 32-bit remainder in E
reg i s te r

MPL addr Multiply L register by 32-bit memory; high half of
result in L register, low half of result in E
reg i s te r

MPY[#] addr Multiply A register by 16-bit memory; high half of
result in A register, low half of result in B
reg i s te r

SBL addr Subtract 32-bit memory from L register
SUB[#] addr Subtract 16-bit memory from A register

Decimal Operations: The instructions in this group perform decimal
arithmetic operations involving two memory locations. Since the amount
of information required to perform a decimal operation cannot be
contained in a single instruction such as XAD (decimal add),
information about the operands' addresses and characteristics (length,
data type, scale differential, etc.) must be stored elsewhere. The
setup operations are described below.

Before performing any decimal operation, your program must store the
following information in the indicated registers:

Operand address 1 Field address register 0 (FARO)

Operand address 2 Field address register 1 (FAR1)

C o n t r o l w o r d L r e g i s t e r

For the decimal edit (XED) instruction only, a fourth setup operation
is necessary: the address of the beginning of the edit control
subprogram must be loaded into the auxiliary base (XB) register. The
EAXB instruction is used for this purpose (see Memory/Register Transfer
Operations, earlier in this chapter).

The field address registers are loaded by using EAFA instructions (see
Character and Field Operations, later in this chapter, and the EAFA
instruction description in the Instruction Sets Guide).

8 - 2 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The control word and the operand addresses can be defined and loaded as
shown below for a decimal add:

EAFA 0,DATA_0
EAFA 1,DATA_1
LDL CTL_WD (or
XAD

LDL ='02004212001L)

CTL_WD DATA '02004212001L
DATA_0 DATA 2030
DATA_1 DATA 59846

Each decimal instruction description given in the Instruction Sets
Guide defines the control word fields required by that instruction.
You must determine the corresponding bit patterns in each case and
transform the required bits into their octal equivalent (you may also
use a decimal or hexadecimal equivalent, or the bit string itself) .
Chapter 6 of the System Architecture Reference Guide describes the
control word and its fields in detail.

Whether you declare the control word as a separate data item or use a
literal value, be sure that you define it as a long (32-bit) quantity
by appending L to either declaration. Otherwise only (the low-order)
16 bits will be allocated; the LDL will nonetheless load 32 bits,
giving unpredictable results for the decimal operation.

The example above uses simple unsigned decimal declarations as
operands. Various other declarations can be used, depending on whether
your program uses packed decimal, leading or trailing sign, or separate
or embedded sign representations. These representations are described
in detail under DECIMAL DATA in Chapter 6 of the System Architecture
Reference Guide.

Unless otherwise noted, the result of a decimal operation is stored
the field represented by the address in FAR1 (field 2).

i n

Arithmetic exception conditions can occur for decimal operations if the
results are outside the range of the result location. The Instruction
Sets Guide describes, for each instruction, the disposit ion of
exception conditions for that instruction.

Some decimal operations use several of the general registers during
their execution. It is the program's responsibility to save and
restore these registers when necessary.

The decimal operations are summarized below,
ins t ruc t i ons .

All are short form

Second Edition 8-24

XAD
XCM
XDV

XMP

XMV

MACHINE INSTRUCTIONS — V MODE

DECIMAL ARITHMETIC OPERATIONS

Decimal add or subtract, depending on control word
Decimal compare
Decimal divide field 2 by field 1; quotient and

remainder in field 2 (see Instruction Sets Guide)
Decimal multiply (see Instruction Sets Guide for setup

and result placement in field 2)
Decimal move

XBTD

XDTB

XED

DECIMAL CONVERSION AND EDITING OPERATIONS

Convert binary to decimal (see Instruction Sets Guide
for location of binary number); result in field 1,
does not alter field 2 or FAR1

Convert decimal to binary; source in field 1, does not
alter field 2 or FAR1 (see Instruction Sets Guide for
location of binary number)

Edit under control of a subprogram (see Instruction
Sets Guide for setup and control program information)

Floating Point Operations: The instructions in this group perform
operations on single-precision, double-precision, or quad-precision
floating point numbers. The four arithmetic operations can be
performed, as can a variety of load, store, test, skip, and other such
operations. Instructions that branch as a result of tests on the
floating accumulator are summarized under Branch Instructions, earlier
in this chapter.

Most operations involve the use of a group of user registers known
collectively as floating accumulators (FACs). The accumulators occupy
the same physical locations as the field address and field length
registers FARO, FLRO, FAR1, and FLR1. Chapter 6 of the System
Architecture Reference Guide gives details on the structure of the
accumulators; accumulator and memory storage capacities for floating
point numbers; and normalization, rounding, and overflow conditions.
See also Chapter 9 of the same volume for some cautions on floating
point and field register overlap.

The following subgroups summarize the floating point operations.
Unless otherwise stated, instruction mnemonics that begin with F
operate on single-precision numbers; those beginning with D operate on
double-precis ion numbers; those beginning with Q operate on
quad-precision numbers. FAC, DAC, and QAC, refer to the floating
accumulator for single, double, and quad precision, respectively.

1-25 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

FLOATING ACCUMULATOR OPERATIONS

DFCM
DFCS addr

DFLD addr

DFST addr

FCM
FCS addr

FLD addr
FSGT
FSLE
FSMI
FSNZ
FSPL
FST addr

FSZE
QFCM
QFCS addr

QFLD addr
QFST addr

Two's-complement DAC mantissa
Compare DAC with memory and skip:

0 halfwords if DAC > memory
1 halfword if DAC = memory
2 halfwords if DAC < memory

Load DAC from memory (does
load ing)

Store DAC into memory (does
s t o r i n g)

Two's-complement FAC mantissa
Compare FAC with memory and skip:

0 halfwords if FAC > memory
1 halfword if FAC = memory
2 halfwords if FAC < memory

Load FAC from memory
Skip 1 halfword if FAC > 0;
Skip 1 halfword if FAC <= 0;
Skip 1 halfword if FAC < 0;
Skip 1 halfword if FAC <> 0;
Skip 1 halfword if FAC > 0;

into memory

n o t n o r m a l i z e b e f o r e

n o t n o r m a l i z e b e f o r e

Store FAC
s t o r i n g)

Skip 1 halfword if FAC = 0;
Two's-complement QAC
Compare QAC with memory and skip:

0 halfwords if QAC > memory
1 halfword if QAC = memory
2 halfwords if QAC < memory

Load QAC from memory
Store QAC into memory (does

s t o r i n g)

used for all precisions
used for all precisions

used for all precisions
used for all precisions

used for all precisions
n o t n o r m a l i z e b e f o r e(does

used for all precisions

n o t n o r m a l i z e b e f o r e

FLOATING POINT CONVERSION OPERATIONS

FCDQ
FDBL
FLTA

FLTL

INTA

INTL

QINQ

QIQR

Convert double to quad
Convert single to double
Convert A register integer to floating point and store

in FAC
Convert L register integer to floating point and store

in FAC
Convert DAC to integer and store in A register (ignores

f rac t i ona l pa r t)
Convert DAC to integer and store in L register (ignores

f rac t i ona l pa r t)
Conver t QAC to i n tege r and s to re i n QAC (see

Instruction Sets Guide)
Convert and round QAC to integer and store in QAC (see

Instruction Sets Guide)

Second Edition 8-26

MACHINE INSTRUCTIONS — V MODE

FLOATING POINT ARITHMETIC OPERATIONS

DFAD addr Add memory to DAC
DFDV addr Divide DAC by memory
DFMP addr Multiply DAC by memory
DFSB addr Subtract memory from DAC
FAD addr Add memory to FAC
FDV addr Divide FAC by memory
FMP addr Multiply FAC by memory
FSB addr Subtract memory from FAC
QFAD addr Add memory to QAC
QFDV addr Divide QAC by memory
QFMP addr Multiply QAC by memory
QFSB addr Subtract memory from QAC

r
DRN

DRNM

DRNP

DRNZ

FRN

FRNM

FRNP

FRNZ

FLOATING POINT ROUNDING OPERATIONS

Round quad to double; store in bits 1 through 64 of
QAC (see Instruction Sets Guide for rounding rules)

Round quad to double towards minus infinity; store in
bits 1 through 64 of QAC (see Instruction Sets Guide
for rounding rules)

Round quad to double towards plus infinity; store in
bits 1 through 64 of QAC (see Instruction Sets Guide
for rounding rules)

Round quad to double towards zero; store in bits 1
through 64 of QAC (see Instruction Sets Guide for
rounding rules)

Round double to single; store in bits 1 through 48 of
DAC (see Instruction Sets Guide for rounding rules)

Round double to single towards minus infinity; store
in bits 1 through 48 of DAC (see Instruction Sets
Guide for rounding rules)

Round double to single towards plus infinity; store in
bits 1 through 48 of DAC (see Instruction Sets Guide
for rounding rules)

Round double to single towards zero; store in bits 1
through 48 of DAC (see Instruction Sets Guide for
rounding rules)

FLOATING POINT LOAD INDEX OPERATIONS

DFLX addr Load X register with 4 times 16-bit contents of memory;
addr cannot be indexed

FLX addr Load X register with 2 times 16-bit contents of memory;
addr cannot be indexed

QFLX addr Load X register with 8 times 16-bit contents of memory;
addr cannot be indexed

8-27 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Character and Field Operations: V-mode programs can operate on
characters and character strings (fields) with the aid of the field
address registers FARO and FAR1 and the field length registers FLRO and
FLR1. These registers operate in pairs, FARO/FLRO and FAR1/FLR1.
(These are the same registers used in the decimal operations described
earlier in this chapter.) The discussion below summarizes the
requirements common to many of the character and field operations;
detailed information can be found in Chapter 6 of the System
Architecture Reference Guide and in the Instruction Sets Guide. In
this description, the terms character and byte are equivalent, and
represent either the high-order or low-order eight bits of a halfword.

In operations in which only one pair of FAR/FLR registers is involved
(such as LDC and STC), either pair (0 or 1) can be specified. For
operations involving both pairs (such as ZED or ZMV), FARO/FLRO
represents the source string and FAR1/FLR1 represents the destination
s t r i n g .

Before and during a character or field operation the FAR contains the
address of the next character to be operated on, while the FLR contains
the number of characters yet to be processed. Both registers must be
preloaded with the appropriate address and length information before
the operation can begin. Use the EAFA instruction to load the
beginning address of the field into FAR, and the LFLI instruction to
load the field length (in bytes) into FLR. (See the instruction
summaries below, and the detailed descriptions in the Instruction Sets
Guide.)

The initializing instructions are coded as shown below. far or fir
represents the field register pair number (0 or 1) .

EAFA far,addr initialize for left byte at addr, OR
EAFA far,addr+8B initialize for right byte at addr

LFLI fir,number init ial ize field length in bytes

After execution of the EAFA instruction, the FAR contains a
segment/offset address and the FLR contains the character offset (see
the next paragraph) within the halfword at the segment/offset location.

After execution of the LFLI instruction, bits 44 through 64 of the FLR
contain the length of the field (the number of characters) to be
operated on. In addition to the field length information, the FLR
contains, in bits 1 to 4, the character offset which, during the
character or field operation, is updated to point to the next character
to be processed. The bit field can thus be considered a four-bit
extension of the segment/offset address in FAR. The value in the bit
field at any given time is either '0000'b or '1000'b (0 or 8 decimal),
r e p r e s e n t i n g t h e l e f t o r r i g h t b y t e , r e s p e c t i v e l y, a t t h e
segment/offset location. Each time the bit field is updated to 0, the
offset part of the address is incremented by 1.

S e c o n d E d i t i o n 8 - 2 8

MACHINE INSTRUCTIONS — V MODE

r

For the edit and translate (ZED and ZTRN) instructions, an additional
setup operation is necessary: the address of the beginning of the edit
control subprogram (for ZED) or the beginning of the translation table
(for ZTRN) must be loaded into the auxiliary base (XB) register. The

EAXB instruction is used for this purpose (See Memory/Register Transfer
Operations, earl ier in this chapter.)

Character and field operations are of two types; those that process
one character per invocation of an instruction (LDC and STC), and those
that operate on an entire field with one invocation of an instruction
(such as ZED, ZFIL, ZMV) . LDC and STC can be used to process
consecutive characters one at a time, and are often coded in a loop.
The loop is typically terminated by a branch on condition code equal
(BCEQ); this is possible because the LDC or STC instruction decrements
the length field in FLR for each character processed, and sets the
c o n d i t i o n c o d e s e q u a l w h e n t h e c o u n t r e a c h e s z e r o . T h e fi e l d
operations other than LDC and STC do not need programmed loops to
operate on fields; their looping is internal to the instruct ion, and
the condition codes at their termination are usually indeterminate.

Character and field operations use several of the general registers
during their execution. It is the program's responsibility to save and
restore these registers when necessary.

The following groups summarize the instructions used in character and
field operations. The designations far and fir represent the number (0
or 1) of the field register pair.

FIELD REGISTER OPERATIONS

ALFA far
EAFA far,addr
L F L I fl r - n
STFA far,addr

TFLL fir
TLFL fir

Add contents of L register to FARfar
Load memory address into FARfar
Load n into FLRflr
Store contents of FARfar into memory (stores 32 or

48 bits — see Instruction Sets Guide)
Transfer contents of FLRflr to L register
Transfer contents of L register to FLRflr; maximum

allowable number is 2**20 (the number of bits in a
64K segment)

8-29 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

LDC fir

STC fir

ZCM

ZED

ZFIL

ZMV

ZMVD

ZTRN

CHARACTER AND FIELD OPERATIONS

If FLRflr is nonzero, load character pointed to by
FARflr into bits 9 through 16 of A register; else
set condition codes equal

If FLRflr is nonzero, store bits 9 through 16 of A
register in locat ion pointed to by FARflr; else
set condition codes equal

Compare fields at FARO (Fl) and FAR1 (F2);
if Fl > F2, set condition codes GT
if Fl = F2, set condition codes EQ
if Fl < F2, set condition codes LT

Edit character field (see Instruction Sets Guide for
edi t contro l informat ion)

Fil l field start ing at FAR1 with the character in
bits 9 to 16 of L register; FLR1 specifies length
of str ing to fi l l

Move field start ing at FARO to field start ing at
F A R 1 ; F L R s d e fi n e l e n g t h s o f fi e l d s (s e e
Instruction Sets Guide for treatment of unequal
leng th fie lds)

Move field starting at FARO to equal length field
starting at FAR1; FLRl defines length of fields

Translate field starting at FARO and store in field
starting at FAR1; FLRl defines length of fields,
XB contains beginning address of translation table
(see Instruct ion Sets Guide for the translat ion
a l g o r i t h m)

Process-Related Operations

The instructions in this group are concerned with various aspects of
the control of a process and its related procedures. Chapters 8 and 9
of the System Architecture Reference Guide discusses process exchange
and procedure calls in detail. Appendix C of the same volume describes
process exchange on the Prime 850.

Only summary lists of these instructions are presented in this chapter;
the Instruction Sets Guide goes into further detail on each one.

ADDRESS MODE CHANGE OPERATIONS

E16S
E32I
E32R
E32S
E64R
E64V

Enter 16S address mode
Enter 321 address mode
Enter 32R address mode
Enter 32S address mode
Enter 64R address mode
Enter 64V address mode

Second Edition 8-30

MACHINE INSTRUCTIONS — V MODE

INTER-PROCECURE TRANSFER OPERATIONS

A R G T A r g u m e n t t r a n s f e r
CALF addr Call fault handler whose ECB is at addr
PCL addr Call procedure whose ECB is at addr
P R T N P r o c e d u r e r e t u r n
S T E X S t a c k e x t e n d

QUEUE MANAGEMENT OPERATIONS

ABQ addr Add entry in A register to bottom of queue pointed to
by addr

ATQ addr Add entry in A register to top of queue pointed to by
addr

RBQ addr Remove from bottom of queue pointed to by addr and
store in A register

RTQ addr Remove from top of queue pointed to by addr and store
in A register

TSTQ addr Set A register to number of items in queue pointed to
by addr

HARDWARE-RELATED OPERATIONS

SMCR
SMCS
SSSN

Skip 1 halfword if machine check flag reset (0)
Skip 1 halfword if machine check flag set (1)
Store system serial number in memory block specified by

XB register

MISCELLANEOUS OPERATIONS

HLT If not in ring 0, simulate a processor halt and display
a message

NOP No operation; proceed to next instruction
STTM Store process timer in memory specified by XB register
S V C S u p e r v i s o r c a l l
XEC addr Execute a single instruction at addr

1-31 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Restricted Instructions

The instructions in this group deal mainly with the manipulation of
system data structures that are essential to PRIMOS operation, and are
therefore protected against access by the casual user. They can be
executed by users who have access to ring 0. Refer to Chapter 5 of the
System Architecture Reference Guide for further information on these
instructions. Chapter 10 of the same volume contains information on
the role of interrupts process exchange.

Only summary lists of these instructions are presented in this chapter;
the Instruction Sets Guide goes into further detail on each one.

INTERRUPT HANDLING OPERATIONS

clear active interrupt

E N B E n a b l e i n t e r r u p t s
ENBL Enab le i n te r rup t s (l oca l)
ENBM Enable interrupts (mutual)
ENBP Enable in terrupts (process)
INBC addr Interrupt notify beginning;
INBN addr Interrupt notify beginning
INEC addr Interrupt notify end; clear active interrupt
INEN addr Interrupt notify end
I N H I n h i b i t i n t e r r u p t s
I N H L I n h i b i t i n t e r r u p t s (l o c a l)
I N H M I n h i b i t i n t e r r u p t s (m u t u a l)
I N H P I n h i b i t i n t e r r u p t s (p r o c e s s)
IRTC In te r rup t re tu rn ; c lea r ac t i ve i n te r rup t
I R T N I n t e r r u p t r e t u r n

~ \

EIO addr

INPUT/OUTPUT OPERATION

Execute I/O

ADDRESS TRANSLATION OPERATIONS

ITLB Inva l i da te STLB en t r y
LIOT addr Load IOTLB
P T L B P u r g e T L B

PROCESS EXCHANGE OPERATIONS

LPID Load Process ID register from bits 1 through 10 of A
reg i s te r

LPSW addr Load program status word from memory

Second Edition 8-32

MACHINE INSTRUCTIONS — V MODE

SEMAPHORE OPERATIONS

NFYB addr Notify semaphore at addr; use LIFO queuing
NFYE addr Notify semaphore at addr; use FIFO queuing
WAIT addr Wait on semaphore at addr

MISCELLANEOUS OPERATIONS

RMC Reset machine check flag to 0
R T S R e s e t t i m e s l i c e
STPM Store processor model number and microcode revision

number in memory block specified by XB register

8 - 3 3 S e c o n d E d i t i o n

Machine Instructions --1 Mode

Th is chap te r desc r i bes t he se t o f mach ine i ns t r uc t i ons t ha t i s
available to you when your program is executing in 321 addressing mode
(commonly referred to simply as I mode). It also describes the various
types of addressing usable in I mode, as wel l as the registers
available to I mode programs.

TYPES OF ADDRESSING

I -mode p rograms use bo th shor t and long fo rm ins t ruc t ions . A l l
i n s t r u c t i o n s t h a t r e f e r t o m e m o r y l o c a t i o n s , e i t h e r f o r d a t a
manipulat ion or as dest inat ions in control t ransfers, are long form
(32-b i t) i ns t ruc t ions . Those tha t man ipu la te reg is te rs and per fo rm
operations unrelated to memory are mostly short form (16-bit).

D i r e c t l o n g f o r m i n s t r u c t i o n s c a n a d d r e s s a l l l o c a t i o n s i n a n y
128-Kbyte segment pointed to by one of the four base registers;
indirect long form instructions can address all locations in up to 40 9 6
128-Kbyte segments.

I mode also supports general register relative, register to register,
and immediate addressing for many instructions. These addressing forms
are described under Addressing Through Registers, in this section. The
instructions that allow these addressing forms are so identified in the
instruction summaries later in this chapter.

I -mode memory addresses a t execu t ion t ime (known as e f fec t i ve
addresses) are virtual addresses consisting of a segment number and an

9-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

o f f s e t . T h e o f f s e t i d e n t i fi e s a p a r t i c u l a r w o r d r e l a t i v e t o t h e
beginning of the segment. Segment numbers and offsets are commonly
represented (in listings such as memory maps produced by linkers) as
two octal numbers separated by a slash:

4001/1025

The offset of the first word in any segment is 0; therefore the
address shown above represents the (octal) 102 6th word in segment
(octal) 4001. Segmented addressing is fully described in the System

Architecture Reference Guide.

Segment numbers (at least in their resolved form) do not appear in an
assembly l i s t ing ; genera l ly on ly the o f fse ts appear, w i th a code
indicating the type of segment in which they will eventually reside.
It is the linking operation performed by SEG or BIND that (among other
things) establishes segment numbers based on whether the data or
instruction in question is defined in a procedure, stack, or l inkage
segment of the program. For information on program linking and how
segments are allocated, refer to the SEG and LOAD Reference Guide and
the Programmer's Guide to BIND and EPFs.

The assembler keeps track of segment information so that, when you use
a label as an operand in an instruction, you do not need to concern
yourself with specifying the segment in which that label was defined.

The processor hardware uses various components of an instruction to
decide which of s ix addressing forms to use in the instruct ion's
execu t i on :

• D i r e c t

• I ndexed

• I n d i r e c t

• Ind i rec t indexed

• General register re lat ive

• Register to register

• Immediate

These addressing forms are summarized below. Detailed information on
addressing can be found in Chapter 3 of the System Architecture
Reference Guide.

Second Edition 9-2

MACHINE INSTRUCTIONS — I MODE

Direct Address

A direct address is indicated by an operand of the form

LABEL1 [+|- LABEL2 +|- LABELn]

The operand is the simple symbolic name of an element defined somewhere
within the referencing segment, or a combination of such names which,
when combined arithmetically, yield a single numeric displacement
within the limits of the segment. In certain cases, you can also use
absolute numbers or other literal values; the assembler resolves them
to displacements. The processor, at execution t ime, adds the
displacement to the contents of the appropriate base register
(procedure, link, or stack) to form the effective address.

Indexed Address

Indexing provides a convenient way to address successive elements in a
table or to count iterations in a loop.

An indexed address is indicated by an operand of the form

LABEL,gr

where g_r is the designation of one of the general registers 1 through
7. I-mode instructions can use any of the general registers 1 through
7 as an index register. (I-mode register usage is described later in
this chapter.)

Here, LABEL is normally a single symbolic name whose displacement value
is determined as in direct addressing. The processor then adds this
displacement to the current contents of a general register, whose value
must have been previously set by the program. The result of the
addition is the effective address.

Indirect Address

An indirect address is indicated by an operand of the form

LABEL,*

Indirect addresses enable a program to make a memory reference to a
location through an indirect pointer. A primary use of indirect
addressing is to refer to locations outside of the segment making the
reference. Prime processors pass arguments to subroutines by address
rather than by value. Therefore, subroutines (which frequently reside
outside their callers' segments and cannot access or be accessed by
their callers using direct addressing) must use indirect pointers to
communicate with their callers.

9-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

In an indirect address, LABEL is a single symbolic name whose
displacement value is determined as in direct addressing. However,
rather than using the resulting address directly as the target of the
operation, the processor interprets it as the address of a pointer
which, in turn, contains the address of the target. Only one level of
indirection is allowed in I-mode programs; that is, the contents of
the pointer cannot itself be an indirect address.

Since an indirect pointer is a 32-bit address, it can contain segment
as well as displacement information, and can thus address across
segment boundaries, which addresses that contain only displacement
information cannot do. Indirect pointers can also be 48 bit entities,
and are used when it is necessary to address specific bits within the
ta rge t .

Indirect Indexed Address

Indirect indexed addresses take one of two forms, depending on whether
indexing is performed before or after indirection:

LABEL,gr* pre-indexed by general register gr
LABEL, *gr post-indexed by general register g_r

In pre-indexing, the processor adds the contents of the register to the
value of LABEL, and uses the result as an indirect address to form the
effective address. In post-indexing, the processor resolves the
indirect address of LABEL, then adds the register contents to it to
form the effective address.

Each form of indirect indexed addressing has its usefulness in
particular situations. Pre-indexing is useful in stepping through a
table of addresses, as in the first of the following examples.
Post-indexing is used primarily in stepping through a table of data, as
in the second example.

S e c o n d E d i t i o n 9 - 4

MACHINE INSTRUCTIONS — I MODE

Example 1 (pre-indexed indirect)

r

r

SEGR
START LH 7,=-8
LOOP LH 2,TABLE+8,7*

STH 2,NUMBER
STH 7,SAVE7
CALL TODEC
AP NUMBER,SL
CALL TONL
LH 7,SAVE7
BHI2 7,LOOP

•
PRTN

LINK
TABLE IP TEST1

IP TEST2
IP TEST3
IP TEST4

NUMBER BSS
SAVE7 BSS
TEST3 DATA 11
TEST1 DATA 22
TEST2 DATA 33
TEST4 DATA 44
ECB$ ECB START

END ECB$

Example 2 (post-indexed indirect)

SEGR
RLIT

START LH 1, =5
LOOP LH 2,TABLE,*7

STH 2,NUMBER
STH 7,SAVE7
CALL TODEC
AP NUMBER, SL
CALL TONL
LH 7,SAVE7
BHD1 7,LOOP

*
PRTN

LINK
TABLE IP TAB-1
NUMBER BSS
SAVE 7 BSS
TAB DATA 1/ 3, 5, 7, 9
ECB$ ECB START

END ECB$

pre-indexed through IP table to data

post-indexed to table of data

r
r 9-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE
* >

Both of these programs print out a l ist of data i tems, one per l ine; A
the first addresses the i tems through a table of indirect pointers
(IPs) which in turn contain the addresses of the data items, while the
second accesses the items in the data table itself. In both cases the
tables consist of equal- length entr ies: in the first they are 32-bit
pointers, and in the second they are 16-bit constants. This accounts
for the difference in the incrementing or decrementing technique used
in the two examples. The first uses an increment of 2 (BHI2) to step
through the 32-bit pointers; the second used a decrement of 1 (BHD1)
to step through the 16-bit data items.

N o t e t h a t t h e C A L L s t a t e m e n t s g e n e r a t e p r o c e d u r e c a l l (P C L)
instructions, which destroy the contents of register 7, among others,
if argument passing is required (as it is for the calls to the TODEC
subroutine). The register must therefore be saved before the calls and
res to red a f te r t he ca l l s . (Re fe r t o the desc r ip t i on o f t he PCL
instruction in the Instruction Sets Guide.)

Addressing Through Registers

Many I-mode memory reference instructions have, in addition to a memory
reference format, two forms of addressing in which a general register
replaces a memory address. These are known as general register
relative and register to register addressing.

General Register Relative Addressing: This addressing format is useful
in the manipulation of data within a structured record or data storage
area, in which a given field is always at the same position relative,
say, to the beginning of the record or to a primary key field. General
register relative addressing involves two registers. The first is used
in the normal way for source, destination, or result storage, while the
second is used in much the same way as a base register and contains,
rather than a data value, a segment/offset address that points to a
memory location. The instruction does its work at this location or
some location relative to it.

An instruction in general register relative format is always 32 bits
long. Bits 1 through 16 contain, in addition to the operation code,
two general register designator fields. One specifies the number of
the source, destination, or result register; the other the number of
the reg is te r con ta in ing the address po in te r. B i t s 17 th rough 32
contain a positive or negative augment to be applied to the address
pointer. Some examples are:

L 1,R0% Load GRl with the data at the address contained in
GRO

A l,R0%+2 Add to the contents of GRl the data at 2 locations
after the address contained in GRO

ST l,R0%-4 Store the contents of GRl at 4 locations before the
address in GRO

~ >

N̂

S e c o n d E d i t i o n 9 - 6

MACHINE INSTRUCTIONS — I MODE

Bits 17 through 32 of each instruction contain the augment 0, +2 or -4.
(Negative augments are in two's-complement form.) If no augment is
specified, as in the first instruction, bits 17 through 32 contain 0.
GRO must be preloaded with the address relative to which these actions
are performed. The sequence shown above can be coded in the following
way:

SEGR

EAR 0,STOR
L 1,R0%
A l,R0%+2
ST l,R0%-4

preload address of STOR into RO
load contents of STOR into GRl
add contents of STOR+2 to GRl
store GRl into STOR-4

STOR

LINK
BSS
DEC 10L
DEC 5L

location of STOR-4
location of STOR
location of STOR+2

In the instruction summary lists later in this chapter, instructions
that can operate in the general register relative format are indicated
by a G following the instruction format.

Register to Register Addressing: This form of addressing manipulates
one register with respect to another, as in a transfer of the contents
of one register to another. Some examples are:

L 1,2 Load contents of GR2 into GRl
ST 0,7 Store contents of GRO into GR7
A 7,6 Add contents of GR6 to contents of GR7

In this form, the instruction is always 16 bits long; the instruction
contains, in addition to the operation code, fields designating the
source and destination register numbers. The second register contains
the value that the displacement address would normally point to.

In the instruction summary lists later in this chapter, instructions
that can operate in the register to register format are indicated by an
R following the instruction format.

9-7 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Immediate Addressing

Some instructions that allow one or both of the register formats also
allow an immediate format. In this form of addressing, instructions
are always 32 bits long. Bits 17 through 32 contain, instead of a
displacement, a numeric operand value coded as a literal:

A 2 , = 1 0 o r
A 2 , = 1 0 L

Literals are coded as described under Operand Field, in Chapter 3. The
above example adds the numeric value 10 to the contents of general
register 2. The literal can be coded as either short (16 bits, without
the L) or long (32 bits, with the L) . The way it is coded determines
what part of the register is affected. The short l i teral generates
what is known as a type 1 immediate instruction, which affects the high
half of the register; the long literal generates a type 2 immediate
ins t ruc t i on , wh i ch a f f ec t s t he en t i r e reg i s te r. S ing le and doub le
precision floating point l i terals can also be coded as operands of
s i n g l e a n d d o u b l e p r e c i s i o n fl o a t i n g p o i n t i n s t r u c t i o n s ; t h e s e
generate type 3 immediate instructions.

Refer to the 321 Mode Summary table in Appendix B of the Instruction
Sets Guide for the bi t structure that determines the type of an
immediate ins t ruc t ion.

In the type 1 immediate format, whether the low half of the register is
affected is determined by the operation: a type 1 load instruction
loads into the high half of the register and zero-fills the low half.
A type 1 add or subtract instruction affects the high half and leaves
the low half unchanged.

Regardless of whether the literal is 16 or 32 bits long, if the numeric
value of the constant will fit into 16 bits, it is placed in bits 17
through 32 o f the ins t ruc t ion; o therwise the ins t ruc t ion in e ffec t
becomes a memory reference format instruction whose displacement points
to a literal storage location in memory. Thus, any integer constant
whose value is between -2**15 and +2**15 - 1, or any string constant of
one or two characters, can be represented in an immediate format
i n s t r u c t i o n .

In the instruct ion summary l is ts later in th is chapter, instruct ions
that can operate in the immediate format are indicated by an 1
fol lowing the instruct ion format.

REGISTER USAGE

The registers l isted on the following page are available to I-mode
programs; their sizes are given in bits.

S e c o n d E d i t i o n 9 - 8

" >

~ \

Reg is te r S i ze

0-7 32
FARO 32
FAR1 32
FLRO 32
FLRl 32
FACO 64

FAC1 64

DACO 64

DAC1 64

QAC 128

PB 32
SB 32
LB 32
XB 32

MACHINE INSTRUCTIONS — I MODE

Func t i on

General Registers 0 through 7
Field address register 0
Field address register 1
Field length register 0
Field Length register 1
F l o a t i n g p o i n t a c c u m u l a t o r 0 (s i n g l e
prec is ion) ; concatenat ion o f FARO and
FLRO
F l o a t i n g p o i n t a c c u m u l a t o r 1 (s i n g l e
p rec is ion) ; conca tena t ion o f FAR1 and
FLRl
F l o a t i n g p o i n t a c c u m u l a t o r 0 (d o u b l e
prec is ion) ; concatenat ion o f FARO and
FLRO
F l o a t i n g p o i n t a c c u m u l a t o r 1 (d o u b l e
prec is ion) ; conca tena t ion o f FAR1 and
FLRl
F l o a t i n g p o i n t a c c u m u l a t o r (q u a d
precision); concatenation of FARO, FLRO,
FAR1 and FLRl
Procedure base register
Stack base register
Link base register
Auxi l iary base register

The regis ters l is ted above are avai lab le to a l l I -mode programs,
execut ing in both r ing 0 and r ing 3. These, as wel l as others
available only to ring 0 programs, are described in the discussion of
user register files in Chapter 9 of the System Architecture Reference
Guide. If your program uses a FAC, pay particular attention to the

fl o a t i n gdiscussion of
that chapter.

over lap between point and field registers in

r
r

Saving and Restoring Registers

If your program uses PCL instructions (generated by CALL statements),
bear in mind that PCL destroys the contents of the GR3, GR5, GR7, FAC1,
and XB registers. The code that is executed as a result of the CALL
may use other registers (such as GRO, GR2, and FACO). It is therefore
prudent to provide for saving the contents of any registers whose
contents are established before the CALL and are required after the
call. This can be done easily by use of the register save (RSAV) and
register restore (RRST) instructions; refer to the System Architecture
Reference Guide for more information on saving and restoring registers.

The same precautions apply to most of the decimal operations and
character and field operations. Each of these instruction descriptions
in the Instruction Sets Guide indicates which registers, if any, the
ins t ruc t ion uses .

9-9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Register Usage Between I and V Modes

You should be aware that when your program switches from I mode to V
mode (as it might when calling a subroutine), there is a correspondence
between registers in the user register set in the two modes. For
example, the V-mode L register corresponds to I-mode general register 2
(GR2) ; the V-mode A and B registers correspond to the high and low
halves, respectively, of I-mode register GR2. Therefore, if your
I-mode program calls a V-mode subroutine and expects the result to
occupy all 32 bits of general register 2 upon return from the
subroutine, the subroutine should load the return value in the L
register before returning to its caller.

A complete list of user registers and their intermode correspondences
is given in the discussion of user register files in Chapter 9 of the
System Architecture Reference Guide.

S e c o n d E d i t i o n 9 - 1 0

MACHINE INSTRUCTIONS — I MODE

THE I-MODE INSTRUCTION SET

This section briefly describes the instructions that can be used in
I-mode programs. Complete descriptions of all I-mode instructions can
be found, listed alphabetically, in Chapter 3 of the Instructions Sets
Guide.

In the summary instruction lists in the rest of this chapter,
instructions that operate on the high half of GRr will affect bits 1
through 16 of the 32-bit register and may affect bits 17 through 32;
those that operate on the low half will affect bits 17 through 32 and
may affect bits 1 through 16. Instructions that are designated as
operating simply on GRr affect the entire 32 bits.

I-mode instructions can be arranged in the following groups:

• Generic (register and shift)

• Branch and jump

• Memory reference

• Decimal

• Floating point

• Character

• Process-related operations

• Restricted operations

Generic Instructions

The generic instruction group comprises two subgroups: register
generic and shift generic.

Reg is te r Gener ic Ins t ruc t ions : Th is subgroup conta ins ch iefly
instructions that manipulate the contents of the eight general
registers GRO through GR7 in various ways and under various conditions.

9 - 1 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

DH1
DH2
DR1
DR2
IH1
IH2
IR1
IR2

REGISTER INCREMENT/DECREMENT OPERATIONS

Decrement high half of GRr by 1
Decrement high half of GRr by 2
Decrement GRr; by 1
Decrement GRr by 2
Increment high half of GRr; by 1
Increment high half of GRr by 2
Increment GRr by 1
Increment GRr by 2

" >

^

REGISTER CLEAR OPERATIONS

CR r Clear GRr to zero
CRHL r Clear high half of GRr to zero
CRHR r Clear low half of GRr to zero
ICHL r Interchange halfwords of GR£ and clear high half
ICHR r Interchange halfwords of GRr and clear low half

REGISTER TRANSFER OPERATIONS

IRH r Interchange halfwords of GRr
INK r Transfer Keys register to GRr
OTK r Transfer GRr to Keys register
ICHL r Interchange halfwords of GRr and clear high half
ICHR r Interchange halfwords of GRr and clear low half

REGISTER BYTE OPERATIONS

CRBL r Clear bits 1 through 8 of GRr to zero
CRBR r Clear bits 9 through 16 of GR£ to zero
ICBL r Interchange bits 1 through 8 and 9 through 16 of GRr;

clear bits 1 through 8 to zero
ICBR r Interchange bits 1 through 8 and 9 through 16 of GRr,

clear bits 9 through 16 to zero
IRB r Interchange bits 1 through 8 and 9 through 16 of GRr

REGISTER COMPLEMENT OPERATIONS

CMH r One's-complement high half of GRr
CMR r One's-complement GRr
TC r Two's-complement GRr
TCH r Two' s-complement high half of GRr_

Second Edition 9-12

MACHINE INSTRUCTIONS — I MODE

ACCUMULATOR SIGN OPERATIONS

CHS r Change sign (complement bit 1) of GRr
CSR r Copy sign (bit 1) of GRr to C bit of

clear bit 1 of GRr to zero
SSM r Set sign (bit 1) of GRr to 1
SSP r Set sign (bit 1) of GRr to 0

Keys register

OPERATIONS WITH KEYS REGISTER

ADLR r Add L bit of Keys register to bit 32 of GRr
RCB Reset C bit of Keys register to 0
SCB Set C bit of Keys register to 1
INK r Transfer Keys register to high half ofGRr
OTK r Transfer high half of GRr to Keys register

LF
LT

LOGIC OPERATIONS

Set high half of GRr to false (bit 16 = 0)
Set high half of GRr to true (bit 16 = 1)

CONDITION CODE (CC) TEST AND SET REGISTER

LCEQ r Set high half of GRr to 1 if CC is EQ
half of GRr to 0

LCGE r Set high half of GRr to 1 if CC is GE
half of GRr to 0

LCGT r Set high half of GRr to 1 if CC is GT
half of GRr to 0

LCLE r Set high half of GRr to 1 if CC is LE
half of GRr to 0

LCLT r Set high half of GRr to 1 if CC is LT
half of GRr to 0

LCNE r Set high half of GRr to 1 if CC is NE
half of GRr to 0

e lse set high

e lse set high

e lse set high

e lse set high

e lse set high

e lse set high

r
r 9-13 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

REGISTER VALUE TEST AND SET
~ >

LEQ r
LGE r
LGT r
LHEQ r

LHGE r

LHGT r

LHLE r

LHLT r

LHNE r

LLE r
LLT r
LNE r

Set bit 16
Set bit 16
Set bit 16
Set bit 16

set to 0
Set bit 16

set to 0
Set bit 16

set to 0
Set bit 16

set to 0
Set bit 16

set to 0
Set bit 16

set to 0
Set bit 16
Set bit 16
Set bit 16

of GRr to 1 if GRr = 0; else set to 0
of GRr to 1 if GRr >= 0; else set to 0
of GRr to 1 if GRr > 0; else set to 0
of GRr to 1 if high half of GRr = 0; else

of GRr to 1 if high half of GRr >= 0; else

of GRr to 1 if high half of GRr > 0; else

of GRr to 1 if high half of GRr <= 0; else

of GRr_ to 1 if high half of GRr < 0; else

of GRr to 1 if high half of GRr <> 0; else

of GRr to 1 if GRr <= 0; else set to 0
of GRr to 1 if GRr < 0; else set to 0
of GRr to 1 if GRr <> 0; else set to 0

FLOATING ACCUMULATOR VALUE TEST AND SET

LFEQ f-r
LFGE f-r
LFGT f-r
LFLE f-r
LFLT f,r
LFNE f,r

Set bit 16 of GRr to 1
Set bit 16 of GRr to 1
Set bit 16 of GRr to 1
Set bit 16 of GRr to 1
Set bit 16 of GRr to 1

if FACf = 0;
if FACf >= 0;
if FACf > 0;
if FACf <= 0;
if FACf < 0;

else set to 0
else set to 0

else set to 0
else set to 0

else set to 0
Set bit 16 of GRr to 1 if FACf <> 0; else set to 0

Shift Generic Instructions: This subgroup contains instructions that
shift the contents of a register a specified number of bits leftward or
rightward. Either the high half of the register or the whole register
can be shifted. There are three types of shifts: logical, rotate, and
ar i thmet ic .

Logical shifts move the register contents a specified number of bits in
a specified direction, storing each bit shifted out in the C bit of the
Keys register. Since only one bit is available for storage, only the
last bit shifted is available for use in subsequent operations; all
intervening bits are lost. Leftward shifts are zero-filled on the
right; rightward shifts are zero-filled on the left.

Eight logical shift instructions contain in their operation codes
directions for shifting a register or half register one or two bits
leftward or rightward. A ninth instruction requires an operand to
specify shifts of more than two bits. Refer to the description of the
SHL instruction in the Instruction Sets Guide for the format of the
operand.

Rotate shifts move the register contents a specified number of bits in
a specified direction, storing each bit shifted out in the C bit of the

Second Edition 9-14

MACHINE INSTRUCTIONS — I MODE

Keys register, and also copying the bit to the opposite end of the
register. Thus, in a lef tward shi f t , each bi t shi f ted out is
reproduced at the right end of the register; in a rightward shift,
each bit shifted out is reproduced at the left end of the register.
The last bit shifted is stored in the C bit of the Keys register.

There is only one rotate shift instruction. It requires an operand
specifying the register size, shift direction, and number of bits to
shift. Refer to the description of the ROT instruction in the
Instruction Sets Guide for the format of the operand.

Arithmetic shifts move the register contents a specified number of bits
in a specified direction.

For a leftward arithmetic shift, the C bit of the Keys register is
initially set to zero. If a sign change occurs (bit 1 of the register
changes from 0 to 1 or from 1 to 0) as a result of the shift, the C bit
is set to 1. Bits shifted out are lost, and bits on the right end are
z e r o - fi l l e d .

For a rightward arithmetic shift, each bit shifted out is stored in the
C bit of the Keys register. The sign bit is propagated to the right.
That is, if the original value of bit 1 is zero, the left-end bits are
zero-filled; if the original value of bit 1 is one, the left-end bits
are one-filled.

There is only one arithmetic shift instruction. It requires an operand
specifying the register size, shift direction, and number of bits to
shift. Refer to the description of the SHA instruction in the
Instruction Sets Guide for the format of the operand.

The following groups summarize the shift generic instructions.

LOGICAL SHIFT OPERATIONS

SHL r,addr

SHLl
SHL2
SHR1
SHR2
SL1
SL2
SRI
SR2

Logical shift high half or all of GRr as specified by
contents of addr

Logical shift high half of GRr left 1 bit
Logical shift high half of GRr left 2 bits
Logical shift high half of GRr right 1 bit
Logical shift high half of GRr right 2 bits
Logical shift GRr left 1 bit
Logical shift GRr left 2 bits
Logical shift GRr right 1 bit
Logical shift GRr right 2 bits

9-15 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

ROTATE SHIFT OPERATIONS

ROT r,addr Rotate shift high half or all of GRr as specified by
contents of addr

ARITHMETIC SHIFT OPERATIONS

SHA r,addr Arithmetic shift high half or all of GRr as specified
by contents of addr

Branch Instructions

Branch instructions alter the normal sequential flow of control in a
program. Branch instructions can test the following conditions and
transfer control to a specifed address if the tested condition is true:

• Contents of the high half or all of a register with respect to
zero

Contents of a floating accumulator (FACO or FAC1) with respect

zero

to zero

• State of the condition codes (CC) or register bits

State of the C bit of the Keys register

State of the L bit of the Keys register and condition codes
(magnitude)

Branch instructions can accept only direct addresses. Therefore, they
can transfer control only to locations within the same segment as
themselves. Jump instructions, described later in this chapter, can
transfer control to other segments through indexing or indirection (as
well as to their own segments through direct addressing).

The following functional groups summarize the branch instructions. All
are long form instructions.

S e c o n d E d i t i o n 9 - 1 6

MACHINE INSTRUCTIONS — I MODE

BRANCH ON REGISTER WITH RESPECT TO ZERO

BHEQ
BHGE
BHGT
BHLE
BHLT
BHNE
BREQ
BRGE
BRGT
BRLE
BRLT
BRNE

r , a d d r
r , a d d r
r , a d d r
r , a d d r
r , a d d r
r , a d d r
r , a d d r
r , a d d r
r , a d d r
r , a d d r
r , a d d r
r , a d d r

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

to addr
t o addr
t o addr
t o addr
t o addr
t o addr
t o addr
t o addr
t o addr
t o addr
t o addr
t o addr

if high half of GRr = 0
if high half of GRr >= 0
if high half of GRr > 0
if high half of GRr <= 0
if high half of GRr < 0
if high half of GRr <> 0
if GRr = 0
if GRr >= 0
if GRr > 0
if GRr <= 0
if GRr < 0
if GRr <> 0

r BRANCH ON FLOATING ACCUMULATOR WITH RESPECT TO ZERO

BFEQ f,addr Branch to addr if FACf = 0
BFGE f,addr Branch to addr if FACf >= 0
BFGT f,addr Branch to addr if FACf > 0
BFLE f,addr Branch to addr if FACf <= 0
BFLT f,addr Branch to addr if FACf < 0
BFNE f,addr Branch to addr if FACf <> 0

BRANCH ON CONDITION CODE OR REGISTER BIT

BCEQ addr
BCGE addr
BCGT addr
BCLE addr
BCLT addr
BCNE addr
BRBR r,b,addr

BRBS r,b,addr

Branch to addr if EQ bit
Branch to addr if LT bit
Branch to addr if LT bit
Branch to addr if LT bit =
Branch to addr if LT bit =
Branch to addr if EQ bit
Branch to addr i f b i t b _

from 1 through 32
Branch to addr if bit b of GRr = 1;

from 1 through 32

0 or EQ bit = 1
= 0 and EQ bit = 0

1 or EQ bit = 1
1 and EQ bit = 0
0

o f GRr =0; b is a number

b is a number

BRANCH ON MAGNITUDE CONDITION

BMEQ addr
BMGE addr
BMGT addr
BMLE addr
BMLT addr
BMNE addr

Branch to addr if EQ bit = 1 (same as BCEQ)
L bit = 1 (same as BLS)
L bit = 1 and EQ bit = 0

Branch to addr if
Branch to addr if
Branch to addr if L bit = 0 and EQ bit = 1
Branch to addr if L bit =
Branch to addr if EQ bit =

0 (same as BLR)
0 (same as BCNE)

r
r 9-17 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

BRANCH ON STATE OF C/L BIT OF KEYS REGISTER

BCR addr Branch to addr if C bit = 0
BCS addr Branch to addr if C bit = 1
BLR addr Branch to addr if L bit = 0
BLS addr Branch to addr if L bit = 1

BRANCH ON REGISTER VALUE AFTER INCREMENT/DECREMENT

BHD1

BHD2

BHD4

BHI1

BHI2

BHI4

BRD1
BRD2
BRD4
BRIl
BRI2
BRI4

r, a d d r

r, a d d r

r, a d d r

r, a d d r

r, a d d r

r, a d d r

r, a d d r
r, a d d r
r,addr
r, a d d r
r,addr
r,addr

Decrement
not zero

Decrement
not zero

Decrement
not zero

Increment
not zero

Increment
not zero

Increment
not zero

Decrement
Decrement
Decrement
Increment
Increment
Increment

high half of GRr by 1

high half of GRr by 2

high half of GRr by 4

high half of GRr by 1

high half of GRr by 2

high half of GRr by 4

branch to addr if

branch to addr if

branch to addr if

branch to addr if

branch to addr if

branch to addr if

GRr by 1
GRr by 2
GRr by 4
GRr by 1
GRr by 2
GRr by 4

branch to addr if not zero
branch to addr if not zero
branch to addr if not zero
branch to addr if not zero
branch to addr if not zero
branch to addr if not zero

Computed Go To Instruction

The computed go to (CGT) instruction is a multi-directional form of
branch instruction, capable of transferring control to any of several
destination addresses in the same segment as the CGT instruction
itself, depending on a preset value in a general register. It is
functionally identical to
typical sequence is:

a FORTRAN computed GO TO statement

LH destination__number
CGT r
DATA number_of_destinations
DAC dest inat ion_l
DAC destination__2

DAC destination_n
i n s t r u c t i o n

Second Edition 9-18

MACHINE INSTRUCTIONS — I MODE

Let n be the number of addresses at which processing can continue. In
this sequence, the LH instruction (or any other instruction or series
of instructions that establish a value in the the high half of GRr)
loads the register with a value of destination__number between 1 and n,
inclusive, depending on which of the destinations control is to be
transferred to. The DATA statement defines the number of valid
destinations, plus 1 to account for an invalid register setting. Thus,
if there are 4 valid addresses at which processing can continue, the
value of the number_of—destinations operand is 5. If the value in GRr_
i s , say, 2 , t hen t he CGT i ns t ruc t i on t r ans fe r s con t ro l t o
destination_2. An invalid value in GR£ (a value less than 1 or greater
than number_of_destinations - 1) transfers control to instruction to
perform error processing.

The destination addresses must be in the local segment, and must be
s p e c i fi e d a s 1 6 - b i t a d d r e s s e s ; h e n c e t h e u s e o f a D A C
pseudo-operation. Refer to Chapter 5 for a description of the DAC
pseudo-operation.

Instruction can be any statement that generates a machine instruction.
For example, it could be a CALL statement to a subroutine that prints
an error message and then exits the program.

Jump Instructions

I-mode programs can use any of three jump instructions to alter the
normal sequence of control. They are all unconditional transfers;
they are independent of any previous test conditions. Two of them are
jump-and-store instructions, normally used to transfer control to
subroutines from which control is expected to return to the code
following the jump instruction. The remaining one is a one-way jump to
code from which no return is expected.

One-way Jump Instruction: A one-way jump instruction is used whenever
a control transfer without a subsequent return is required. One of its
typical uses is to return from a subroutine to which control has been
transferred by one of the two jump-and-store instructions. Any of the
following operand forms is permissible:

JMP addr d i rec t , to loca l segment on ly
JMP addr,r indexed by r, to local segment only
JMP addr,* indirect through IP, to any segment
JMP addr,*r indirect through IP post-indexed by r,

to any segment
JMP addr,r* indirect through IP pre-indexed by r,

to any segment
JMP Rr% through general register r, to any segment
JMP XB% th rough aux i l i a r y base reg i s te r,

to any segment

9 - 1 9 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Jump-and-Store Instructions: A jump-and-store instruction stores a
return address in a specific place (see the descriptions below); the
code to which control is transferred must therefore know which form of
jump was used to transfer to it so that it can make the appropriate
re tu rn .

The two jump-and-store instructions and their storage and return
mechanisms are summarized below. (Further details are given in the
Instruction Sets Guide.)

JSR r,addr Store the address following the JSR in the high half
of GRr. Jump to addr. Return by JMP PB%,r

JSR can jump only to a location in the local
segment. Be careful that, in the code being jumped
to, the register used to save the return address is
not used for other purposes; do not, for example
use GR3, GR5, or GR7 if the target code contains
CALL statements that pass arguments.

JSXB addr Store the address following the JSXB in the
auxiliary base (XB) register. Jump to addr. Return
by JMP XB%.

JSXB can jump to nonlocal segments as well as to the _
local segment . The caut ion g iven above regard ing ^
register integrity applies also to the XB register
when the target code contains CALL statements that
pass arguments.

You can save the XB register into an unused general
register at the beginning of the target routine if
the target routine requires the XB register, and
restore it just before the return. The following
code will do this for you:

TARGET LDAR 1,'17 store XB into GRl

code requiring use of XB register

STAR 1,'17 restore XB from GRl
JMP XB% return to cal ler

The XB register is register ' 17 in the user register
set. Refer to the System Architecture Reference
Guide for information on addressing registers.

S e c o n d E d i t i o n 9 - 2 0

MACHINE INSTRUCTIONS — I MODE

Memory Reference Instructions

This section describes a group of instructions that can refer to or
modify the contents of memory locations; that is, they can read from
and write to memory.

Because the memory reference instruction group comprises a large number
of instructions, their descriptions are divided into several subgroups:

r
• Memory/register transfer operations

• Memory/register logic operations

• Memory test

• Integer operations

• Decimal operations

• Floating point operations

• Character and field operations

As stated earlier in this chapter, many of the memory reference
instructions can be generated in register and immediate formats, in
addition to their memory reference format. The instructions for which
one, two, or all three of these formats are valid are indicated in the
summaries below by an R for register to register format, a G for
general register relative format, or an I for immediate format.

Memory/Register Transfer Operations: The instructions in this group
transfer the contents of a memory location to a register, or transfer
the contents of a register to a memory location. Also included here
are instructions that calculate an effective address and load it into a
r e g i s t e r.

r
r

EALB addr
EAR r,addr
EAXB addr

I r , a d d r RG
I H r, a d d r RG
L r , a d d r RGI
LDAR r,addr

LH r,addr RGI

MEMORY/REGISTER TRANSFER OPERATIONS

Load effective address into link base register
Load effective address into GRr
Load effective address into auxil iary base

reg i s te r
Interchange GRr; and 32-bit memory
Interchange high half of GRr and 16-bit memory
Load GRr; from 32-bit memory
Load from addressed register into GRr (see

Instruction Sets Guide)
Load high half of GRr from 16-bit memory

9-21 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

MEMORY/REGISTER TRANSFER OPERATIONS (continued)

LHLl r,addr RG

LHL2 r,addr RG

LHL3 r,addr RG

RRST addr

RSAV addr
ST r,addr G
STAR r,addr

STCD r,addr

STCH r,addr

STH r,addr G

Shift contents of addr left 1 bit; then load
into high half of GRr

Shift contents of addr left 2 bits; then load

3 bits; then load

Instruct ion Sets

into high half of GRr
Shift contents of addr left

into high half of GRr
Restore user registers (see

Guide)
Save user registers (see Instruction Sets Guide)
Store GR£ into 32-bit memory at addr
S to re GRr in to addressed reg is te r (see

Instruction Sets Guide)
If contents of GRr+1 equals 32-bit contents of

addr, store GRr into addr; (addr is generated
as a 32-bit address pointer)

If contents of low half of GRr equals 16-bit
contents of addr, store high half of GRr into
addr; (addr is generated as a 32-bit address
pointer)

Store high half of GRr into 16-bit memory at
addr

Memory/Register Logic Operations: The instructions in this group
perform logic operations on a register based on the contents of a
memory address.

MEMORY/REGISTER LOGIC OPERATIONS

N r, a d d r RGI
NH r,addr RGI

0 r,addr RGI
OH r,addr RGI

X r, a d d r RGI
XH r, a d d r RGI

Logical AND 32-bit memory at addr to GRr
Logical AND 16-bit memory at addr to high half

of GRr
Inclusive OR 32-bit memory at addr to GRr
Inclusive OR 16-bit memory at addr to high half

of GRr
Exclusive OR 32-bit memory at addr to GRr
Exclusive OR 16-bit memory at addr to high half

of GRr

^ \

Second Edition 9-22

MACHINE INSTRUCTIONS — I MODE

Memory Test Operations: The instructions in the following group test a
memory location in various ways and set the condition codes in the keys
register based on the result.

MEMORY TEST OPERATIONS

C r,addr RGI Compare GRr to 32-bit memory at addr; if:
GRr > memory, set CC to GT, LINK bit to 1
GRr = memory, set CC to EQ, LINK bit to 1
GRr < memory, set CC to LT, LINK bit to 0

CH r,addr RGI Compare high half of GRr to 16-bit memory at
add r ; i f :
high half of GRr > memory, set CC to GT, LINK
bit to 1
high half of GRr = memory, set CC to EQ, LINK
bit to 1
high half of GRr < memory, set CC to LT, LINK
bit to 0

TM addr G Test 32-bit memory at addr; if:
memory > 0, set CC to GT
memory =0, set CC to EQ
memory < 0, set CC to LT

TMH addr G Test 16-bit memory at addr; if:
memory > 0, set CC to GT
memory = 0, set CC to EQ
memory < 0, set CC to LT

Integer Operations: The instructions in this group perform binary
integer arithmetic operations involving a register and a memory
location. Several instructions that increment or decrement memory
without involving a register are also included. (Decimal and floating
point arithmetic operations are described later in this chapter.)

In all cases in which a register is involved, one of the operands of
the integer operation must have been stored in the appropriate register
before the operation is performed. Use the positioning instructions
listed below to properly position operands in the registers before D
and DH operations, and after M and MH operations. See the Instruction
Sets Guide for details on how positioning is done.

Except for the memory increment and decrement instructions, the result
of the operation is stored in the register, not in the memory location.
A store instruction must follow the operation if the result is to be
used later and if the same register (or part of it) is used in
intervening operations. For example, an integer operation leaving its
result in the high half of a general register, followed by one leaving
its result in the (entire) same register, destroys the result in the
high half of the register. An STH instruction should appear between
the two integer operations.

9 - 2 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

In some cases, consecutive, or chained, integer operations involving
the same register or parts of a register are valid, provided the the
memory operands are of the correct length. For example, an algebraic
expression such as

" >

M * X + B

can be coded as the following instruction sequence

LDH 1,M
M H 1 , X
A 1 , B
PIMH 1
STH 1,Y

M DATA
X DATA
B DATA 5L
Y BSS

The DATA statements declare M and X as 16-bit quantities for the MH
operation, and B as a 32-bit quantity for the A operation. The result
of the sequence (Y) after the A operation occupies all of GRl. The
PIMH instruction positions the result in the high half of GRl for
further operations involving 16-bit integers. If subsequent operations
involve 32-bit integers the PIMH is omitted.

Exception conditions can occur for some integer operations if the
results are outside the range of the result location. In an operation
such as the example above, if the result in GRl is greater than +327 67
or less than -327 68, the PIMH instruction causes an overflow condition
to be set. The Instruction Sets Guide describes, for each instruction,
the result limits and the disposition of exception conditions for that
i n s t r u c t i o n .

^N

POSITIONING OPERATIONS

PID r Position dividend in GRr and GRr+1 before 32-bit integer
divide; r_ must be an even number

PIDH r Position dividend in GRr before 16-bit integer divide
PIM r Position product in GRr+1 into GRr after 32-bit integer

multiply; r must be an even number
PIMH r Position product in GRr into high half of GRr after 16-bit

integer multiply

Second Edition 9-24

MACHINE INSTRUCTIONS — I MODE

INTEGER ARITHMETIC OPERATIONS

r

A r , a d d r RGI
AH r , a d d r RGI
D r , a d d r RGI

DH

MH

r,addr RGI

D M a d d r G
DMH addr G
I M a d d r G
I M H a d d r G
M r , a d d r R G I

r,addr RGI

s r , a d d r RGI
SH r , a d d r RGI

ZM addr
ZMH addr

Add 32-bit memory at addr to GRr
Add 16-bit memory at addr to high half of GRr
Divide 64-bit GRr|GRr+1 by 32-bit memory at

addr ; 3 2 - b i t 3 2 - b i t
number

addr ;

q u o t i e n t i n G R r ; ,
remainder in GRr+1; r must be an even

Divide 32-bit GRr by 16-bit memory at
16-bit quotient in high half of GRr, 16-bit
remainder in low half of GRr

Subtract 1 from 32-bit memory at addr
Subtract 1 from 16-bit memory at addr
Add 1 to 32-bit memory at addr
Add 1 to 16-bit memory at addr
Multiply 32-bit GRr by 32-bit memory at addr;

high half of result in GRr, low half of result
in GRr+1; r must be an even number

Multiply high half of GRr by 16-bit memory at
addr ; h igh hal f o f resul t in h igh hal f o f
GRr, low half of result in low half of GRr

Subtract 32-bit memory at addr from GRr
Subtract 16-bit memory at addr from high half of

GRr
Clear 32-bit memory at addr to zero
Clear 16-bit memory at addr to zero

Decimal Operat ions: The instruct ions in this group perform decimal
arithmetic operations involving two memory locations. Since the amount
of informat ion required to perform a decimal operat ion cannot be
conta ined in a s ing le ins t ruc t ion such as XAD (dec imal add) ,
information about the operands' addresses and characteristics (length,
data type, scale differential, and the like) must be stored elsewhere.
The setup operations are described below.

Before performing any decimal operation, your program must store the
fol lowing information in the indicated registers:

Operand address 1 Field address register 0 (FARO)

Operand address 2 Field address register 1 (FAR1)

C o n t r o l w o r d G e n e r a l r e g i s t e r 2 (G R 2)

For the decimal edit (XED) instruction only, a fourth setup operation
is necessary : the address o f the beg inn ing o f the ed i t con t ro l
subprogram must be loaded into the auxiliary base (XB) register. The
EAXB instruction is used for this purpose (see Memory/Register Transfer
Operations, earl ier in this chapter).

9-25 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The field address registers are loaded by using EAFA instructions (see
Character and Field Operations, later in this chapter, and the EAFA
instruction description in the Instruction Sets Guide).

The control word and the operand addresses can be defined and loaded as
shown below for a decimal add:

EAFA 0,DATA_0
EAFA 1,DATA_1
L 2 ,CTL_WD (o r L
XAD

2,='02004212001L)

CTL_WD DATA '02004212001L
DATA_0 DATA 2030
DATA_1 DATA 59846

Each dec imal ins t ruct ion descr ip t ion g iven in the Inst ruct ion Sets
Guide defines the control word fields required by that instruct ion.
You must determine the corresponding bit patterns in each case and
transform the required bits into their octal equivalent (you may also
use a decimal or hexadecimal equivalent, or the bit string itself).
Chapter 6 of the System Architecture Reference Guide describes the
control word and its fields in detail.

Whether you declare the control word as a separate data item or as
literal, be sure that you define it as a long (32-bit) quantity by
appending L to either declaration. Otherwise only (the low-order) 16
bi ts wi l l be al located; the L instruct ion wi l l nonetheless load 32
bits, giving unpredictable results for the decimal operation.

The example above uses s imple unsigned decimal declarat ions as
operands. The control word can specify other declarations, depending
on whether your program uses packed decimal, leading or trailing sign,
or separate or embedded s ign representat ions of i ts data. These
representations are described in detail under DECIMAL DATA in Chapter 6
of the System Architecture Reference Guide.

Unless otherwise noted, the result of a decimal operation is stored in
the field represented by the address in FAR1 (field 2).

Arithmetic exception conditions can occur for decimal operations if the
results are outside the range of the result location. The Instruction
S e t s G u i d e d e s c r i b e s , f o r e a c h i n s t r u c t i o n , t h e d i s p o s i t i o n o f
except ion condit ions for that instruct ion.

Some decimal operations use several of the general registers during
the i r execu t i on . I t i s t he p rog ram 's r espons ib i l i t y t o save and
restore these registers when necessary.

The decimal operations are summarized below,
i n s t r u c t i o n s .

A l l a r e s h o r t (1 6 - b i t)

Second Edition 9-26

MACHINE INSTRUCTIONS — I MODE

DECIMAL ARITHMETIC OPERATIONS

XAD
XCM
XDV

XMP

XMV

Decimal add or subtract, depending on control word
Decimal compare
D e c i m a l d i v i d e fi e l d 2 b y fi e l d 1 ; q u o t i e n t

remainder in field 2 (see Instruction Sets Guide)
and

Decimal multiply (see Instruction Sets Guide for
and result placement in field 2)

Decimal move

setup

XBTD

XDTB

XED

DECIMAL CONVERSION AND EDITING OPERATIONS

Convert binary to decimal (see Instruction Sets Guide
for locat ion of binary number); result in field 1,
does not alter field 2 or FAR1

Convert decimal to binary; source in field 1, does not
alter field 2 or FAR1 (see Instruction Sets Guide for
location of binary number)

Edit under control of a subprogram (see Instruct ion
Sets Guide for setup and control program information)

F loa t ing Po in t Opera t ions : The ins t ruc t ions in th is g roup per fo rm
o p e r a t i o n s o n s i n g l e - p r e c i s i o n , d o u b l e - p r e c i s i o n , o r q u a d - p r e c i s i o n
fl o a t i n g p o i n t n u m b e r s . T h e f o u r a r i t h m e t i c o p e r a t i o n s c a n b e
performed, as can a variety of load, store, test, and other such
operat ions. Ins t ruc t ions that branch as a resu l t o f tes ts on the
floating accumulator are summarized under Branch Instructions, earlier
in this chapter.

Most operations involve the use of a group of user registers known
collectively as floating accumulators (FACs). The accumulators occupy
the same physical locat ions as the field address and field length
reg is ters FARO, FLRO, FAR1, and FLRl . The System Arch i tec ture
Reference Guide gives details on the structure of the accumulators;
accumulator and memory storage capacities for floating point numbers;
and normalization, rounding, and overflow conditions. The same volume
lists some cautions on floating point and field register overlap.

The subgroups in this section summarize the floating point operations.
Unless o therwise s ta ted, ins t ruc t ion mnemonics that beg in w i th F
operate on single-precision numbers; those beginning with D operate on
d o u b l e - p r e c i s i o n n u m b e r s ; t h o s e b e g i n n i n g w i t h Q o p e r a t e o n
quad-precision numbers. FAC, DAC, and QAC, refer to the floating
accumulators for single, double, and quad precision, respectively.

For those instruct ions that al low the register-to-register (R) format,
addr can be a floating accumulator number, either 0 or 1, whichever is
not designated by f_. Using a register number in place of a memory
address indicates that the operation is performed between the two
single or double floating point accumulators. This technique is not
applicable to quad precision operations, since there is only one quad
floa t ing accumu la to r.

9-27 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

FLOATING ACCUMULATOR OPERATIONS

DFC f,addr RGI

DFCM f
DFL f,addr RGI

DFST f,addr G

FC f,addr RGI

FCM f
FL f,addr RGI

FST f,addr G

QFC addr Gl

QFCM
QFLD addr Gl

QFST addr G

Compare DACf with 64-bit memory at addr; if:
DACf > memory, set CC to GT
DACf = memory, set CC to EQ
DACf < memory, set CC to LT

Two's-complement mantissa of DACf
Load DACf from 64-bit memory at addr (does not

normalize before loading)
Store DACf into 64-bit memory at addr (does not

normalize before storing)
Compare FACf with 32-bit memory at addr; if:

FACf > memory, set CC to GT
FACf = memory, set CC to EQ
FACf < memory, set CC to LT

Two's-complement mantissa of FACf
Load FACf from 32-bit memory at addr (does not

normalize before loading)
Store FAC into memory (does not normalize before

stor ing)
Compare QAC with 128-bit memory at addr; if:

QAC > memory, set CC to GT
QAC = memory, set CC to EQ
QAC < memory, set CC to LT

Two's-complement mantissa of QAC
Load QAC from 128-bit memory at addr (does not

normalize before loading)
Store QAC into 128-bit memory at addr (does not

normalize before storing)

FLOATING POINT CONVERSION OPERATIONS

D B L E f C o n v e r t s i n g l e p r e c i s i o n F A C f t o d o u b l e
precision; store in DACf

F C D Q C o n v e r t d o u b l e t o q u a d p r e c i s i o n b y c l e a r i n g
FACO to zero

FLT f ,r Convert 32-bi t integer in GRr to float ing point;
store in DACf

FLTH f-r Convert 16-bit integer in high half of GRr to
floating point; store in FACf

INT f , r Conver t double-prec is ion DACf to 32-b i t in teger ;
store in GRr

INTH f,r Convert double-precision DACf to 16-bit integer;
store in high half of GRr

QINQ Conver t QAC to in teger and s tore in QAC (see
Instruction Sets Guide)

QIQR Convert and round QAC to integer and store in
QAC (see Instruction Sets Guide)

Second Edition 9-28

MACHINE INSTRUCTIONS — I MODE

FLOATING POINT ARITHMETIC OPERATIONS

DFA f ,addr RGI
DFD f ,addr RGI
DFM f ,addr RGI
DFS f ,addr RGI
FA f , a d d r RGI
FD f , a d d r RGI
FM f , a d d r RGI
FS f , a d d r RGI
QFAD addr Gl
QFDV addr Gl
QFMP addr Gl
QFSB addr Gl

Add 64-bit memory at addr to DACf
Divide DACf by 64-bit memory at addr
Multiply DACf by 64-bit memory at addr
Subtract 64-bit memory at addr from DACf
Add 32-bit memory at addr to FACf
Divide FACf by 32-bit memory at addr
Multiply FACf by 32-bit memory at addr
Subtract 32-bit memory at addr from FACf
Add 128-bit memory at addr to QAC
Divide QAC by 128-bit memory at addr
Multiply QAC by 128-bit memory at addr
Subtract 128-bit memory at addr from QAC

r FLOATING POINT ROUNDING OPERATIONS

DRN Round quad to double; s tore in b i ts 1 through 64 of
QAC (see Instruction Sets Guide for rounding rules)

DRNM Round quad to double towards minus infini ty; store in
bits 1 through 64 of QAC (see Instruction Sets Guide
for rounding rules)

DRNP Round quad to doub le towards p lus infin i t y ; s to re in
bits 1 through 64 of QAC (see Instruction Sets Guide
for rounding rules)

DRNZ Round quad to doub le towards zero ; s to re in b i ts 1
through 64 of QAC (see Instruction Sets Guide for
rounding rules)

FRN f Round double to single; store in bits 1 through 48 of
DACf (see Instruction Sets Guide for rounding rules)

FRNM f Round double to s ingle towards minus infini ty ; s tore
in bits 1 through 48 of DACf (see Instruction Sets
Guide for rounding rules)

FRNP f Round double to single towards plus infinity; store in
bits 1 through 48 of DACf (see Instruction Sets Guide
for rounding rules)

FRNZ f Round double to single towards zero; store in bits 1
through 48 of DACf (see Instruction Sets Guide for
rounding rules)

Character and F ie ld Operat ions: I -mode programs can operate on
characters and character str ings (fields) wi th the aid of the field
address registers FARO and FAR1 and the field length registers FLRO and
FLRl. These are the same registers used in the decimal operations
descr ibed ear l ier in th is chapter. Field registers operate in pairs,
FARO/FLRO and FAR1/FLR1.

The discussion below summarizes the character and field operations;
detailed information can be found in the System Architecture Reference
Guide and in the Instruct ion Sets Guide. In th is descr ipt ion, the
terms character and byte are equivalent, and represent ei ther the
high-order or low-order eight bits of a halfword.

9-29 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

In operations in which only one pair of FAR/FLR registers is involved
(such as LDC and STC), either pair (0 or 1) can be specified. For
operations involving both pairs (such as ZED or ZMV) FARO/FLRO always
represents the source string and FAR1/FLR1 always represents the
destination string.

Before and during a character or field operation the FAR contains the
address of the next character to be operated on, while the FLR contains
the number of characters yet to be processed. Both registers must be
preloaded with the appropriate address and length information before
the operation can begin. Use the EAFA instruction to load the
beginning address of the field into FAR, and the LFLI instruction to
load the field length (in bytes) into FLR. (See the instruction
summaries below, and the detailed descriptions in the Instruction Sets
Guide.)

After execution of the EAFA instruction, the FAR contains a
segment/offset address and the FLR contains the character offset (see
the next paragraph) within the halfword at the segment/offset location.

After execution of the LFLI instruction, bits 44 through 64 of the FLR
contain the length of the field (the number of characters) to be
operated on. In addition to the field length information, the FLR
contains a bit field (in bits 1 through 4) which, during the character
or field operation, is updated to point to the next character to be
processed. The bit field can thus be considered a four-bit extension
of the segment /offset address in FAR. The value in the bit field at
any given time is either '0000'b or '1000'b (0 or 8 decimal),
r e p r e s e n t i n g t h e l e f t o r r i g h t b y t e , r e s p e c t i v e l y, a t t h e
segment/offset location. Each time the bit field is updated to 0, the
offset part of the address is incremented by 1.

The initializing instructions are coded as shown below. far or fir
represents the field register pair number (0 or 1).

EAFA far,addr initialize for left byte at addr OR
EAFA far,addr+8B initialize for right byte at addr

LFLI fir,number initialize field length in bytes

For the edit and translate (ZED and ZTRN) instructions, an additional
setup operation is necessary: the address of the beginning of the edit
control subprogram (for ZED) or the beginning of the translation table
(for ZTRN) must be loaded into the auxiliary base (XB) register. The
EAXB instruction is used for this purpose (see Memory/Register Transfer
Operations, earlier in this chapter).

Character and field operations are of two types; those that process
one character per invocation of an instruction (LDC and STC), and those
that operate on an entire field with one invocation of an instruction
(such as ZED, ZFIL, ZMV). LDC and STC can be coded in a loop to
process consecutive characters one at a time. The loop is typically

S e c o n d E d i t i o n 9 - 3 0

MACHINE INSTRUCTIONS — I MODE

repeated by a branch on condition code not equal (BCNE); this is
possible because the LDC or STC instruction decrements the length field
in FLR for each character processed, and sets the condition codes to
equal when the count reaches zero.

The following example illustrates a possible method of transferring an
eight-character string, one character at a time, from one memory field
to another, using both sets of field registers and general register 3.

LOOP

EAFA 0,FROM
LFLI 0,8
EAFA 1-TO
LFLI 1/8
LDC 0,3
STC 1,3
BCNE LOOP

LINK
FROM DATA
TO BSS

ABCDEFGH'

The BCNE instruction tests only the most recent setting of the
condition codes. In the example above, this is the condition set by
the STC instruction; the conditions set by the LDC instruction are
l o s t .

The field operations other than LDC and STC do not need programmed
loops to operate on fields; their looping is internal to the
instruction, and the condition codes at their termination are usually
indeterminate.

Character and field operations use several of the general registers
during their execution. It is the program's responsibility to save and
restore these registers when necessary.

The following groups summarize the instructions used in character and
field operations. The designations far and fir represent the number (0
or 1) of the field register pair.

9-31 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

ARFA far,r
EAFA far,addr
L F L I fl r , n
STFA far,addr

TFLR flr-r
TRFL flr, r

FIELD REGISTER OPERATIONS

Add contents of GRr to FARfar
Load memory address into FARfar
Load n into FLRflr
Store contents of FARfar into memory (stores

48 bits — see Instruction Sets Guide)
Transfer contents of FLRflr to GRr
Tr a n s f e r c o n t e n t s o f G R r t o F L R fl r ;

32 o r

maximum
allowable number is 2**20 (the number of bits in a
64K segment)

" >

^

CHARACTER AND FIELD OPERATIONS

LDC flr,r I f FLRflr is non-zero, load character pointed to by
FARflr into bits 9 through 16 of the high half of
GRr; else set condition codes equal

STC flr, r I f FLRflr is non-zero, s tore b i ts 9 through 16 of
the high half of GRr in location pointed to by
FARflr; else set condition codes equal

ZCM Compare fields at FARO (Fl) and FAR1 (F2)
if Fl > F2, set condition codes GT
if Fl = F2, set condition codes EQ
if Fl < F2, set condition codes LT

Z E D E d i t c h a r a c t e r fi e l d (s e e I n s t r u c t i o n S e t s G u i d e f o r
edi t contro l informat ion)

Z F I L F i l l fi e l d s t a r t i n g a t F A R 1 w i t h t h e c h a r a c t e r i n
bits 9 through 16 of GR2; FLRl specifies length
of str ing to fi l l

Z M V M o v e fi e l d s t a r t i n g a t F A R O t o fi e l d s t a r t i n g a t
F A R 1 ; F L R s d e fi n e l e n g t h s o f fi e l d s (s e e
Instruction Sets Guide for treatment of unequal
leng th fie lds)

Z M V D M o v e fi e l d s t a r t i n g a t FA R O t o e q u a l l e n g t h fi e l d
starting at FAR1; FLRl defines length of fields

Z T R N Tr a n s l a t e fi e l d s t a r t i n g a t FA R O a n d s t o r e i n fi e l d
starting at FAR1; FLRl defines length of fields,
XB contains beginning address of translation table
(see Instruct ion Sets Guide for the translat ion
a l g o r i t h m)

" >

^

Process-Related Operations

The instructions in this group are concerned with various aspects of
the control of a process and its related procedures. Chapters 8, 9,
and 10 of the System Architecture Reference Guide discussion processes
and procedures in detail.

Only summary lists of these instructions are presented in this chapter;
the Instruction Sets Guide goes into further detail on each one.

Second Edition 9-32

MACHINE INSTRUCTIONS — I MODE

E16S
E32I
E32R
E32S
E64R
E64V

ADDRESS MODE CHANGE OPERATIONS

Enter 16S address mode
Enter 321 address mode
Enter 32R address mode
Enter 32S address mode
Enter 64R address mode
Enter 64V address mode

r

INTER-PROCECURE TRANSFER OPERATIONS

A R G T A r g u m e n t t r a n s f e r
CALF addr Call fault handler whose ECB is at addr
PCL addr Call procedure whose ECB is at addr
P R T N P r o c e d u r e r e t u r n
S T E X S t a c k e x t e n d

QUEUE MANAGEMENT OPERATIONS

ABQ r,addr Add entry in high half of GRr to bottom of queue
pointed to by addr

ATQ r,addr Add entry in high half of GRr to top of queue pointed
to by addr

RBQ r,addr Remove from bottom of queue pointed to by addr and
store in high half of GRr

RTQ r,addr Remove from top of queue pointed to by addr and store
in high half of GRr

TSTQ r,addr Set high half of GRr to number of items in queue
pointed to by addr

r
HLT

NOP
SSSN

STTM
SVC

MISCELLANEOUS OPERATIONS

If not in ring 0, simulate a processor halt and display
a message

No operation; proceed to next instruction
Store system serial number in memory block specified by

XB register
Store process timer in memory specified by XB register
Superv isor ca l l

R e s t r i c t e d I n s t r u c t i o n s

The instructions in this group deal mainly with the manipulation of
system data structures that are essential to PRIMOS operation, and are
therefore protected against access by the casual user. They can be
executed by users who have access to ring 0. Refer to Chapter 5 of the
System Architecture Reference Guide for further information on these
i n s t r u c t i o n s .

9-33 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Only summary lists of these instructions are presented in this chapter,
the Instruction Sets Guide goes into further detail on each one.

INTERRUPT HANDLING OPERATIONS

E N B E n a b l e i n t e r r u p t s
ENBL Enab le i n t e r r up t s (l oca l)
ENBM Enable in terrupts (mutual)
ENBP Enable in ter rupts (process)
INBC addr Interrupt notify beginning; clear active interrupt
INBN addr Interrupt notify beginning
INEC addr Interrupt notify end; clear active interrupt
INEN addr Interrupt notify end
I N H I n h i b i t i n t e r r u p t s
I N H L I n h i b i t i n t e r r u p t s (l o c a l)
I N H M I n h i b i t i n t e r r u p t s (m u t u a l)
I N H P I n h i b i t i n t e r r u p t s (p r o c e s s)
IRTC In te r rup t re tu rn ; c l ea r ac t i ve i n te r rup t
I R T N I n t e r r u p t r e t u r n

EIO addr

INPUT/OUTPUT OPERATION

Execute I/O

ADDRESS TRANSLATION OPERATIONS

ITLB Inva l i da te STLB en t r y
LIOT addr Load IOTLB
P T L B P u r g e T L B

PROCESS EXCHANGE OPERATIONS

LPID Load Process ID register from bits 1 through 10 of GR2
LPSW addr Load program status word from memory

SEMAPHORE OPERATIONS

NFYB addr Notify semaphore at addr;
NFYE addr Notify semaphore at addr;
WAIT addr Wait on semaphore at addr

use LIFO queuing
use FIFO queing

MISCELLANEOUS OPERATIONS

RMC
RTS
STPM

Reset machine check flag to 0
Reset time slice
Store processor model number and microcode revision

number in memory block specified by XB register

Second Edition 9-34

10
Machine Instructions -- IX Mode

32 IX mode (commonly referred to simply as IX mode) comprises a small
set of instructions, in addition to those described for I mode in
Chapter 9, that are executable on the 2550, 9650, 9750, 9950, 9955, and
9955II processors. These instructions permit the initialization and
modification of indirect pointers and provide an interface between C
language programs and assembly language routines that have to
manipulate C language pointers.

INDIRECT POINTER-RELATED INSTRUCTIONS

Two IX-mode instructions, LIP (Load Indirect Pointer) and AIP (Add
Indirect Pointer), enable a program to load the contents of an indirect
pointer into a general register and to add to or subtract from the
value of the pointer stored in the register. Memory locations relative
to the indirect pointer can then be addressed by instructions that
allow the general register relative format, described in Chapter 9.

For example, assume that a series of identically-structured data areas
are to be processed. Each structure contains 40 16-bit halfwords, and
in each structure, the contents of the fourth and tenth halfwords are
to be added together and stored in the 28th halfword. This sequence
could be coded as follows:

LIP 1,STRUC_AD load GRl for 1st structure
LOOP LH 2 ,R l%+3 load 4 th ha l fword i n to GR2

AH 2,Rl%+9 add 10th halfword to GR2

1 0 - 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

STH 2,Rl%+27
AIP 1,FORTY
C 1,STRC_END
BCNE LOOP

store sum into 28th halfword
increment for next structure
test for loop end
repeat loop

LINK
STRUC_AD IP
F O RT Y D ATA
STRUC-1 BSZ
STRC_END IP

STRUC-1
40L
400

address of 1st structure
size of each structure
ten 40-character structures
address of end of structure

WoA?- >0~-a

The data area STRUC—1 is assumed to have been previously loaded with
data f rom some source such as an ex terna l fi le conta in ing the
40-c>a^aetjeT structures. The test for the end of the loop compares the
current contents of GRl with the contents of the IP following the
structure (STRC_END).

The LIP instruction loads the 32-bit contents of the indirect pointer
STRUC_AD in general register 1. The pointer consists of both a segment
number and an offset. All processing within the structure is done
through GRl by instructions in the general register relative format.
The number by which the register is incremented by the AIP instruction
must be a long (32-bit) integer; the increment is appl ied to the
offset port ion of the address in the register. The indirect pointer
itself is not modified.

The formats of the two indirect pointer-related instructions are shown
below. The G indicates that the general register relative form of the
ins t ruc t ion i s permi t ted . Refer to the Ins t ruc t ion Sets Gu ide fo r
details of the operation of these instructions.

INDIRECT POINTER OPERATIONS

AIP r,addr G Add 32-bit addr to contents of GRr
LIP r,addr Load 32-bit indirect pointer at addr into GRr

C LANGUAGE-RELATED INSTRUCTIONS

Seven IX-mode ins t ruct ions enable a program to load and s tore
characters and manipulate pointers on behalf of a C language program.

A C language pointer differs from an ordinary indirect pointer in that
it contains a bit that determines whether a character is being loaded
from or stored into the left or right byte of a halfword. Refer to
the discussion of the C language pointer in Chapter 3 of the System
Archi tecture Reference Guide for more informat ion on th is pointer

N̂

Second Edition 10-2

MACHINE INSTRUCTIONS — IX MODE

format.

The general method for handling the C language pointer is to first load
the pointer into a general register using the LIP instruction described
in the previous section. (Do not use GRO for this purpose; the
assembler will display an error message.) Then use the LCC and SCC
instructions to load and store characters, and the ICP and DCP
instructions to increment and decrement from one character to the next.
The sample program below uses these instructions to load A into GR4 and
B into GR6.

SEGR
ST NOP

LIP 7, CHAR_J_D
LCC 4,R7%
ICP
LCC 6,R7%
PRTN
LINK

CHAR_J_D IP CHARS
CHARS DATA C'ABCD'
ECB$ ECB ST

END ECB$

Additional instructions enable addition to or subtraction from the
pointer (ACP), comparing the pointer value to some other value (CCP),
and testing for a null pointer (TCNP). All of these instructions are
described in detail in the Instruction Sets Guide. The instructions
are summarized below. An R indicates that the instruction can be coded
in register to register format; a G indicates general register
relative format; an 1^ indicates immediate format. All are described
in Chapter 9.

C LANGUAGE-RELATED OPERATIONS

ACP d, s RI Add the two's-complement contents of GRs_ to the C
pointer in GRd; result in GRd

CCP d, s R Compare the C pointer in GRs^ to the C pointer in
GRd; if:

GRd > GRs, set CC to GT
GRd = GRs, set CC to EQ
GRd < GRs, set CC to LT

DCP r Decrement C pointer in GRr by one byte
ICP r Increment C pointer in GRr by one byte
LCC r,addr G Load character at addr into bits 9 through 16 of

GRr
SCC r,addr G Store character from bits 9 through 16 of GRr into

addr
TCNP addr R Test C pointer at addr for null (bits 4 through 32

equal to zero); sets CC to EQ if null, else set CC
to NE

1 0 - 3 S e c o n d E d i t i o n

11
Macro Facility

r

The macro facility enables you to define frequently used sequences of
instructions, data, and pseudo-operations, and to invoke these
sequences where required in an assembly language program. These
sequences are known as macros; they are defined by macro definitions,
and the statements used to invoke them are macro calls. Use of macros
relieves the programmer from repetitious coding of the same instruction
sequences.

For example, the macro call

TRANSFER DATA TO SAVE

can be made to generate the instruction sequence

LDA DATA
STA SAVE

The name of the macro in this example is TRANSFER; a statement with a
macro name in the operation field is a call to the macro having that
name.

1 1 - 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Once a macro function has been defined, you can call it any number of
times within a program. You can supply argument values, such as DATA
and SAVE in the above example, with each call. You can also add dummy
words such as TO or FROM to increase readability. Dummy words are
identified during macro definition and are not treated as arguments in
a macro call.

The example below illustrates the TRANSFER macro definition, a call to
it, and the code generated by the call. The discussion that follows
the example describes each element.

Begin definition; TO is a dummy word
Provide for label on generated code
Instruction using first argument
Instruction using second argument
End definition

ADD__1 TO ADD_2 Call to TRANSFER
Generated statement w/ 1st argument
Generated statement w/ 2nd argument

SEG
TRANSFER MAC TO
<0> SET

LDA <1>
STA <2>
ENDM

LABEL__1 TRANSFER /■_d:
LDA ADD._1
STA ADD._2

MACRO DEFINITION

A macro must be defined before it is called. It is good practice to
define all macros before any of the main body of the program is coded,
although this is not a requirement of the assembler.

Each macro definition begins with a MAC pseudo-operation. The MAC
statement must have a label (TRANSFER in the example). This label is
the macro name by which it is called. It can also have optional dummy
words (TO) and argument identifiers in the operand field. (Dummy words
and argument identifiers are described later in this chapter.)
Statements that make up the macro definition follow, terminated by an
ENDM pseudo-operation.

Argument References

Argument references are expressions enclosed within angle brackets
(< >). Any part of a statement within a macro definition may contain
an argument reference. The expression may contain symbols, integers,
or both, provided any symbols can be evaluated as single-precision
(16-bit) integers, and that the entire expression is reducible to a
single-precision integer value. The example on the next page shows the
use of symbols and constants in argument references.

^N

S e c o n d E d i t i o n 1 1 - 2

MACRO FACILITY

TRANSNO MAC
LDA <J>
STA <K+2-J-l>
LDX <0>

<0> SET
DATA C'XX'
ENDM

J EQU
K EQU
MACNO TRANSNO AA BB

LDA AA
STA BB
LDX MACNO
PRTN
LINK

AA BSS
BB BSS

END

The expressions in the angle brackets are reducible to integer values
because the symbols J and K are equated to integer values by the EQU
statements.

A zero within angle brackets (or an expression that reduces to a value
of zero) is replaced by whatever, if anything, is in the label field of
the macro call statement. In the example above, the label field of the
call to TRANSNO contains the label MACNO. This label replaces the <0>
in the label field of the SET statement. (The SET statement does not
appear in the generated code unless an LSTM pseudo-operation occurs
somewhere before the call.) The MACNO label also replaces the <0> in
the operand field in the LDX statement, and is resolved to its address
value in the generated LDX instruction.

Use the <0> form of argument reference as a label field only in a SET
or XSET statement. If it is used for an instruction or data element
and the macro is called more than once, the assembler generates an
error message (SYMBOL MULTIPLY DEFINED). The label that replaces the
<0> in the SET or XSET statement is assigned the value and mode of the
assembler's current location counter.

Assembler Attribute References

The assembler maintains a set of attributes that contain information
vital to the progress of the assembly. Associated with each attribute
is an attribute number and an attribute value. Most attributes are for
the assembler's internal use, and hold such things as the current
character pointer, statement line number, current program counter, and
macro processing counters and flags.

1 1 - 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Attributes are referenced by an attribute number preceded by the number
sign character (#) . The attribute number can be a symbol or an
expression within parentheses, as long as any symbols have been
previously defined as 16-bit integers and the expression represents a
value of 0, 1, or 100 through 128 (decimal). The attribute value can
be any 16-bit quantity, and can represent either a character or a
numeric element, depending on how the assembler uses it.

Attribute references can be used both in macro definitions and in macro
calls. An example of the use of attributes is the operation of the IFx
(structured IF) pseudo-operation, described in Chapter 4.

A list of the assembler attributes, their numbers, and their meanings
is given at the end of this chapter.

Local Labels Within Macros

Local labels, which do not conflict with labels outside of the macro,
can be assigned and referenced within a macro definition by prefixing
the label with the ampersand character (&). When the macro is called,
the ampersand is replaced by a four-digit macro call number, thereby
assuring the label's uniqueness regardless of the number of times the
same macro is called. Each macro call within an assembly increments
the macro call number by 1; the current call number is stored in
assembler attribute #001.

The numeric prefix does not appear in the listing, but the label may
appear more than once, depending on the number of times the macro is
ca l led.

E x a m p l e s : A s s i g n e d
Local Label Evaluated As In Macro Call No

& A B C 0 0 0 2 A B C 0 0 0 2
& X 3 A 1 7 3 9 X 3 A 1 7 3 9

MACRO CALLS

A macro call is a statement that uses as its operation code the name of
a predefined macro:

argument, ...
[label] macro-name dummy-word, ...

a rgument - ident ifier,

For each macro call, the assembler generates the code contained in the
macro definition, starting at the current location. This is known as

S e c o n d E d i t i o n 1 1 - 4

MACRO FACILITY

expanding the macro call. Argument references in the macro definition
are replaced by argument values from the macro call's operand field.

Several calls to the same macro may not, for each call, generate the
same code. The macro definition may contain blocks of code that are
conditionally assembled (see the discussions of conditional assembly in
Chapter 4 and the SCT and SCTL pseudo-operations in Chapter 7).
Whether or not these blocks are generated can depend on, for example,
the value of a call argument or the contents of an assembler attribute.

Argument Values

The operand field of a macro call usually contains one or more argument
value expressions. An argument value expression begins with the first
non-space character of the operand field and continues until either a
terminating comma or space appears. The comma or space is not
considered to be part of the argument expression.

Argument Values in Parentheses: Enclose argument value expressions in
parentheses when commas, spaces, or string delimiters within a single
argument are desired. The outside parentheses are not considered as
part of the argument expression. Parentheses can be used in forming
sublists of arguments for macro cal ls nested within another macro
definition. See NESTING MACROS, later in this chapter.

Argument Subst i tut ion

Dur ing expans ion of a macro ca l l , the assembler subst i tu tes the
argument values in the macro call operand field for the argument
references in the macro definition. Argument expressions are matched
to argument references in numerical order from left to r ight. The
first argument expression in the macro call replaces argument reference
1, the second, reference 2, and so on. Some examples are shown below.

Argument Field Argument <1> Argument <2> Argument <3>

A
A+3
X ,Y-1 ,Z *A -1
X,B-C (Z3X2)
(A, B-l), C
(X, Y, (Zl+Z2),3)

A 0
A + 3 0
X Y - l
X B - C
A , B - l C
X , Y, (Z 1 + Z 2) , 3 0

Z*A-1
Z3X2
0
0

11-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

In a call to the TRANSFER macro such as

TRANSFER ARGl, ARG2+3

the variable ARGl is argument 1 and the expression ARG2+3 is argument
2. Thus, the TRANSFER macro call shown would be assembled as:

LDA ARGl
STA ARG2+3

A r g u m e n t r e f e r e n c e s i n a m a c r o d e fi n i t i o n t h a t d o n o t h a v e
corresponding argument values in a macro call are set to zero by the
assembler.

Using Macro Calls as Documentation

An ordinary macro call such as

TRANSFER ARGl, ARG2

although functionally complete, does not provide, from a documentary
point of v iew, a complete descr ipt ion of i ts operat ion. I t is not
poss ib le , by look ing a t the ca l l , to te l l in wh ich d i rec t ion the
transfer occurs. By using additional words in the operand field of a
macro call, the programmer can show more precisely the nature of the
function. Macro calls can be made self-describing by a combination of
meaningful argument symbols such as SOURCE, TARGET, and MESSAGE; dummy
words such as TO and FROM; and argument identifiers. Dummy words are
for descriptive purposes only and are ignored by the assembler, while
argument identifiers serve to link arguments with argument references
in some sequence other than the default positional order.

Dummy Words: Dummy words applicable to a given macro are defined in
the operand fie ld o f the MAC s ta tement tha t s ta r t s the macro
defin i t i on . For example :

TRANSFER MAC FROM TO

ENDM

Second Edition 11-6

MACRO FACILITY

In the above example, FROM and TO are dummy words. In any subsequent
call to this macro, the assembler ignores the words FROM and TO; all
other expressions in the operand field are interpreted as argument
values, proceeding in numerical argument order from left to right.
These values are substituted for the argument references in the macro
definition statements. For example, when the TRANSFER macro is called
by

TRANSFER FROM ALPHA TO BETA

the assembler ignores the FROM and TO, and assembles the macro as if
the call statement were

TRANSFER ALPHA, BETA

A dummy word string can be any combination and number of letters,
numerals, periods and $ signs, terminated by a comma. Any number of
dummy word strings can be used. If the first character of a dummy word
string is a left parenthesis, all characters, including spaces and
commas, up to the matching right parenthesis are considered part of the
dummy word. The parentheses are not considered part of the string.

Argument Identifiers: While the self-describing effect of dummy words
improves the description of a macro call, the programmer must still be
careful to enter values for arguments in the proper order. Argument
iden t i fie rs inc rease the fo rmat flex ib i l i t y o f macro ca l l s by
associating an argument number with a dummy word, regardless of the
order in which arguments occur in the call. In the TRANSFER macro, for
example, identifiers can be defined so that argument 2 follows the
dummy word TO, and argument 1 follows FROM, regardless of the order in
which TO and FROM appear in a macro call.

Argument identifiers, like dummy words, are assigned in the operand
field of a MAC statement that starts a macro definition. To define an
argument identifier, set a dummy word, in parentheses, equal to the
desired argument number:

TRANSFER MAC (FR0M)=1, (TO)=2

ENDM

1 1 - 7 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

When a call to the macro uses an argument identifier in its operand 1
field, the first nondummy expression immediately fol lowing the
identifier is taken as the value of the argument:

TRANSFER FROM ALPHA TO BETA
TRANSFER TO BETA FROM ALPHA

Both of these calls have the same effect. The expression following the
dummy word FROM is taken as argument <1>, and the expression following
TO is taken as argument <2>. Argument identifiers and dummy words can
be intermixed in the same call. Ordinary dummy words are ignored, as
described previously.

Arguments that are not associated with identifier words receive values ^^
in the usual positional order. For example, the macro defined by: ^^|

MASK MAC (BY)=2, (IN)=3, STORE, AND
LDA <1>
ANA ='<2>
STA <3>
ENDM

c a n b e c a l l e d b y ^ - ^ ^

MASK INPUT BY 17 AND STORE IN BUFFI.

Using the identifier words BY and IN, argument 2 is given a value 17
and argument 3 is given the value BUFFI. The only remaining element in
the call is INPUT, so it is assigned to the first argument reference
that is not associated with an identifier, which is argument reference
<1>.

NESTING MACROS

Macro definitions may contain calls within them, as in the following
example:

The WAIT1 macro, which calls another macro, TRANSFER, is defined by:

WAIT1 MAC
L D X = < 1 >
B D X * - l
TRANSFER <2>
ENDM

S e c o n d E d i t i o n 1 1 - 8

MACRO FACILITY

WAIT1 is called by

WAIT1 100, (ARGl, ARG2)

It is assembled as

LDX =100
BDX * - l
LDA ARGl
STA ARG2

The WAIT1 macro interprets the list in parentheses as a single argument
(argument 2). During the expansion of WAIT1, the two elements replace
WAITl 's argument reference <2>, but without the parentheses, thus
passing two arguments to the call to TRANSFER.

Macro definitions, while they can contain calls to other macros, cannot
conta in other macro defini t ions. Fur ther, a ca l led macro must be
defined before the macro that calls it.

CONDITIONAL ASSEMBLY

There are a number of pseudo-operations which allow the programmer to
condi t ional ly inc lude or omi t par ts o f a macro dur ing expansion.
Conditional assembly pseudo-operations are discussed in Chapter 4. See
also the discussion of the SCT and SCTL statements in Chapter 7.

MACRO LISTING

Three pseudo-operat ions provide different levels of l ist ing detai l for
macro calls and the resulting generated statements.

LSTM Lists macro statements and all lines generated by expansion
o f t h e m a c r o : i n s t r u c t i o n s , d a t a , a n d m a c r o r e l a t e d
pseudo-opera t ions .

L S M D L i s t s m a c r o c a l l s t a t e m e n t s a n d l i n e s t h a t g e n e r a t e
instruct ions, data, and non-macro pseudo-operat ions; th is
is the default.

NLSM Lists only the macro call statement; no generated code or
pseudo-operat ions are l isted.

11-9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Each of these pseudo-operations remains in effect until a new macro
listing control pseudo-operation is specified.

ASSEMBLER ATTRIBUTE LIST

The following assembler attributes are valid as of PRIMOS Revision
21.0:

LABEL NUMBER

0
1

100
101
102

CC 103
CCM 104

105
CDYN 106
MDYN 107

108
MCLS 109
MCRC 110

111
MCRN 112
MODE 113
NCRD 114
NERR 115
NMFL 116
PASS 117
RPL 118
STAK 119
TC 120
TCHB 121
TCNT 122
IFLG 123
DFVL 124
SEG 125
ABM 126

PMB 127
LBM 128

DESCRIPTION

Number of arguments in current macro call
Current macro call number
A register
B register
X register
Current character pointer
Character count max of source line
Used by dynm (must precede CDYN)
Current dynamic storage pointer
Maximum dynamic stack space used
(reserved)
Macro list control
Current extent of macro call number
Last character string length parity
Current macro nest number
Current mode of assembler
Current record number (card number)
Number of lines in program with errors
No-macro-search flag (0=search)
Pass 1=0, pass 2=1
Current program counter value
Current temporary store stack limit
Last character fetched
TC held back flag
TC repeat count
Indirect operator flag (0=indirect)
Table search value
SEG mode flag (0, 1, -1)
Current abstract machine
0=S,R and 1=V,I
Procedure size max
Link size max

Second Edition 11-10

12
Using Subroutines

A subroutine is a block of executable code to which a program can
transfer control to perform some function, and from which control is
returned to the program when the function is completed. Transferring
control to the subroutine is known as calling the subroutine, and when
the subroutine completes its function, it returns to the program that
cal led i t , usual ly to the instruct ion fol lowing the cal l . The cal l ing
and called routines are often referred to as simply the caller and the
c a l l e e .

Subroutines and subroutine calls can be implemented in several ways in
assembly language programs. A subroutine can be local to the caller;
that is, it is contained in the same assembly module as its caller.
Local subroutine code resides between the same SEG or SEGR and END
statements as the code that calls it, and is assembled each time the
calling code is assembled. Nonlocal, or external, subroutines, on the
other hand, reside in separately assembled modules and need not be
assembled each time their callers are assembled.

LOCAL SUBROUTINES

The re a re seve ra l ways o f ca l l i ng and re tu rn i ng f r om a l oca l
subroutine. The principal difference in call and return methods l ies
in the location in which the return address is stored by the caller at
the time of the call, and the way in which the callee uses that
location at the time of the return.

1 2 - 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Local Calls in V Mode

Calls to local subroutines in V Mode are made by one of the four jump
instructions that, at the time of the jump, store the address of the
instruction following the jump at some location known to the
subroutine. These are the JST, JSX, JSY, and JSXB instructions (see
Chapter 8). Each is illustrated in the following sections by examples
that call a subroutine, SQUARE, that calculates the squares of two
numbers and returns the results in the A register. The numbers to be
squared are passed to the subroutine also in the A register.

JST Call: The JST (Jump and Store) instruction stores the address of
the next instruction in a 16-bit halfword at the target address, and
then transfers control to the location following that halfword.

LDA =25
JST SQUARE
STA X25
LDA =13
JST SQUARE
STA X13

SQUARE DAC * *
STA TEMP
MPY TEMP
PIMA
JMP# SQUARE,*
LINK

X25 BSS
X13 BSS
TEMP BSS

return address stored here
control transferred to here

return indirectly via address in SQUARE;

The JST call is perhaps the most straightforward of all of the calling
mechanisms, but it is unsuited for use in pure procedure segments,
because it alters a location (the DAC at SQUARE) in the procedure
segment. If this method is used, the procedure must be declared impure
by using the IMPURE operand of the SEG pseudo-operation (see Chapter
4) .

JSX Call: The JSX (Jump and Store in X Register) instruction stores
the address of the instruction following the jump in the X register,
and then transfers control to the target address.

Second Edition 12-2

USING SUBROUTINES

LDA =25
JSX SQUARE
STA X25
LDA =13
JSX SQUARE
STA X13

SQUARE STA TEMP
MPY TEMP
PIMA
JMP PB%,X
LINK

X25 BSS
X13 BSS
TEMP BSS

control transferred to here

return via PB register indexed by X

The JSX call can be used in pure procedure segments because the X
register is independent of any segment; nothing in the procedure
segment is modified by storing a return address in this register.

If the X register is used in a subroutine's processing, the subroutine
should begin by saving the register contents with an STX instruction,
and end by restoring it with an LDX instruction just before the return
JMP. Alternatively, a JSY or JSXB call can be used, as described
below.

JSY Call: The JSY (Jump and Store in Y Register) instruction stores
the address of the instruction following the jump in the Y register,
and then transfers control to the target address.

LDA =25
JSY SQUARE
STA X25
LDA =13
JSY SQUARE
STA XI3

SQUARE STA TEMP
MPY TEMP
PIMA
JMP PB%,Y
LINK

X25 BSS
X13 BSS
TEMP BSS

control transferred to here

return via PB register indexed by Y

The JSY call can be used in pure procedure segments because the Y
register is independent of any segment; nothing in the procedure
segment is modified by storing a return address in this register.

If the Y register is used in a subroutine's processing, the subroutine
should begin by saving the register contents with an STY instruction,

12-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

and end by restoring it with an LDY instruction just before the return
JMP. Alternatively, a JSXB call can be used, as described below.

JSXB Call: The JSXB (Jump and Store in Auxiliary Base Register)
instruction stores the address of the instruction following the jump in
the XB register, and then transfers control to the target address.

LDA =25
JSXB SQUARE
STA X25
LDA =13
JSXB SQUARE
STA X13

SQUARE STA TEMP control transferred to
MPY TEMP
PIMA
JMP XB% return via XB register
LINK

X25 BSS
X13 BSS
TEMP BSS

The JSXB call can be used in pure procedure segments because the XB
register is independent of any segment; nothing in the procedure
segment is modified by storing a return address in this register.

If the XB register is used in a subroutine's processing (for example,
by a ZED or ZTRN instruction, or *a call to a nonlocal subroutine), the
subroutine must save the XB register contents before using XB, and
restore it before the return JMP. Saving the XB register, in turn,
uses the L register, so arguments passed in the A, B, or L register
must also be saved. A possible sequence for register preservation is:

STL TEMP—1 save argument if passed in A, B, or L register
LDLR '17 save XB in TEMP_2
STL TEMP—2 via L register
LDL TEMP—1 restore argument to L register

A, B, L, and XB can now be used
to process the argument

STL TEMP—1 save subroutine result if returned in A, B, or L

additional processing that may involve A, B, or L,
such as a call to a nonlocal procedure

LDL TEMP_2
STLR '17
LDL TEMP_1
JMP XB%

restore XB from TEMP_2
via L register

restore result in L
re turn

Second Edition 12-4

USING SUBROUTINES

Note

The assembler displays an error message on the LDLR and STLR
instructions. However, the correct code is generated, and the
subroutine executes correctly.

An alternate method of return is to use an indirect jump via TEMP_2

JMP TEMP_2, *

This removes the need for the LDL and STLR instructions used to restore
XB from TEMP_2.

The temporary storage areas TEMP_1 and TEMP_2 must both be two
halfwords long.

Local Calls in I Mode

Calls to local subroutines in I Mode are made by one of the two jump
instructions that, at the time of the jump, store the address of the
instruction following the jump at some location known to the
subroutine. These are the JSR and JSXB instructions (see Chapter 9).
Each is illustrated in the following sections by examples that call the
SQUARE subroutine to calculate the squares of two numbers and return
the results in a general register. The numbers to be squared are
passed to the subroutine in the same general register.

JSR Call: The JSR (Jump and Store in General Register) instruction
stores the address of the next instruction in a general register, and
then transfers control to the target address.

LH 2,=25
JSR 1,SQUARE
STH 2,X25
LH 2,=13
JSR 1,SQUARE
STH 2-X13

SQUARE STH 2,TEMP
MH 2,TEMP
PIMH
JMP PB%,1
LINK

X25 BSS
X13 BSS
TEMP BSS

store return in GRl

control transferred to here

return via PB indexed by GRl

12-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The JSR call can be used in pure procedure segments because the general
registers are independent of any segment; nothing in the procedure
segment is modified by storing a return address in a general register.

Note that the general register used for the return cannot be GRO, since
only GRl through GR7 can be used for indexing. GRO can, however, be
used for general-purpose temporary storage within the subroutine.
Also, be aware of the registers used in the subroutine, and avoid, if
possible, using one of these for the return; if this is unavoidable,
save and restore the return register using STH and LH instructions.

JSXB Call: The JSXB (Jump and Store in Auxiliary Base Register)
instruction stores the address of the instruction following the jump in
the XB register, and then transfers control to the target address.

LH 2,=25
JSXB SQUARE
STH 2,X25
LH 2,=13
JSXB SQUARE
STH 2,X13

SQUARE STH 2, TEMP
MH 2, TEMP
PIMH
JMP XB%
LINK

X25 BSS
X13 BSS
TEMP BSS

control transferred to here

return via XB register

The JSXB call can be used in pure procedure segments because the XB
register is independent of any segment; nothing in the procedure
segment is modified by storing a return address in this register.

If the XB register is used in a subroutine's processing (for example,
by a ZED or ZTRN instruction or a CALL pseudo-operation) , the
subroutine should begin by saving the XB register contents in an unused
register r_ with an LDAR r,'17 instruction, and end by restoring it with
an STAR r,'17 instruction just before the return JMP. Alternatively, a
JSR call can be used, as described previously.

Second Edition 12-6

USING SUBROUTINES

EXTERNAL SUBROUTINES

Prime supplies a large number of standard subroutines for use by
programs written in any of its programming languages. These
subroutines are grouped into libraries, described in the Programmer's
Guide to BIND and EPFs, and in Volume I of the Subroutines Reference
Guide.

The standard subroutines are written in assembly language or any of
several high-level languages. They are assembled or compiled
independently of any program that calls them, and are therefore, from
the point of view of the calling program, nonlocal, or external
subroutines.

External subroutines can also be user-written, assembled, and collected
into user l ibraries. Writing and building subroutine l ibraries is
discussed in detail in Volume I of the Advanced Programmer's Guide.

The assembler, when assembling a calling program, cannot resolve
references to entry points and other locations within an external
procedure. It is the function of Prime's linkers, BIND and SEG, and
the dynamic linking mechanism to do this. The calling program uses the
EXT pseudo-operation to identify external locations to be resolved
after assembly is completed.

The linker locates the external modules by means of a set of search
rules and entrypoint lists. Prime provides a set of search rules that
include all of the standard libraries. These rules can, however, be
modified to suit the user's particular needs; a search rule can, for
example, be deleted if the associated library is never used, or one can
be added to accommodate a library of user-written subroutines. A
complete description of the use of search rules appears in Volume II of
the Advanced Programmer's Guide.

External Calls

The standard method of calling external subroutines is through the CALL
pseudo-operation, which performs several implicit functions. The
calling mechanism is the same for both V mode and I mode. The CALL
statement:

• Generates an implied EXT statement to identify its target as an
entrypoint to a procedure outside the calling program

• Generates an explicit PCL (procedure call) instruction to effect
the transfer of control

• Provides an indirect pointer (IP) in which to place the address
of the external entrypoint at execution time

1 2 - 7 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The procedure call mechanism is described in detail in Chapter 8 of the
System Architecture Reference Guide; indirect pointers are filled in
during either linking or execution, as described in Volume I of the
Advanced Programmer's Guide.

Entrypoints to Called Routines

The primary requirement that must be met in order that one program may
transfer control to (or call) another is that the caller must know, at
execution time, the address of the first executable instruction in the
called routine. In local subroutines, this information can be provided
by the assembler, since all locations are known at assembly time. In
nonlocal cases, the callees' addresses are not known at the time the
caller is assembled; they must be provided by other means: by way of
either external symbol and entrypoint declarations for resolution by
the linker, or dynamic entrypoints for resolution by the dynamic
linking mechanism. Only the former are described here; the latter are
discussed in Volume I of the Advanced Programmer's Guide.

External Symbols in a Calling Program: An external symbol, that is,
one that exists in a called program, is identified to a calling program
by an EXT pseudo-operation (see Chapter 6). This symbol is the same as
that used as the operand of the CALL pseudo-operation that calls the
external program.

If, instead of a CALL statement, a PCL instruction is used to call an
external program, both the EXT and the IP statements must be explicitly
coded. The IP operand must be the same as the EXT operand; the PCL
operand must reference the label of the IP statement indirectly. Since
these functions are implicitly performed by the CALL statement, the
CALL is the simpler and less error-prone of the two methods. Figure
12-1 shows an assembled program that calls two user-written subroutines
SQUARE and CUBE, and two Prime-supplied subroutines TODEC and TONL.
The SQUARE subroutine is called by the PCL method; the rest use the
CALL statement.

To summarize, the calling program must do three things that the CALL
pseudo-operation does implicitly. It must

• Provide an explicit EXT statement identifying the subroutine's
entrypoint as a location external to the calling program, as
shown in line 2 of Figure 12-1.

• Provide an explicit labeled indirect pointer (IP) whose operand
matches that of the EXT statement. This is the statement whose
label is SQIP (line 19). Note that it is coded in the Link
segment.

• Code the operand of the PCL instruction (line 3) as an indirect
reference to the label of the indirect pointer at line 19.

S e c o n d E d i t i o n 1 2 - 8

USING SUBROUTINES

(0001)
(0002)

(0003)

(0004)

ST

SEG
EXT

PCL

| square| 1
000000: 061432.I000400LL 1 |SQIP|,*

000002: 001100.000424L AP =25,S
000004: 001300.000402L (0005) AP X25,SL

1
000006:

|
061432 .I000426L1 1 (0006)

(0007)

CALL

AP

TODEC

X25,SL1' 000010: 001300.000402L
000012: 061432 .I000430L (0008) CALL TONL

1 I 1 1 '
(0009)
(0010)

(0011)

CALL

AP

CUBE

=13,S

11
000014:

1
061432 .|000432L

i
- i ' 000016: 001100.000425L

000020: 001300.000403L (0012) AP X13,SL
000022: 061432.000426L (0013) CALL TODEC
000024: 001300.000403L (0014) AP X13,SL
000026: 061432.000430L (0015) CALL TONL
000030: 000611 (0016)

(0017)
PRTN

1— 000000.OOOOOOE
(0018)
(0019)

LINK
I P000400> ISQIPl—1 I square|—1

000402> (0020) X25 BSS
000403> (0021) X13 BSS
000404> 000000

000012
000011
000000
177400
014000

000424

(0022)

(0023)

ECB$ ECB

END

ST

ECB$

000424> 00.000031A

1H
000425> 00.000015A

000000.OOOOOOE
000000.OOOOOOE
000000.OOOOOOE

IP for
IP for
IP for

TODEC
TONL
CUBE

1 000426>1
1 000430>^ 1

000432>

Assembly Language CALL vs. PCL Mechanism
Figure 12-1

12-9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

All of these details are handled automatically when you use a CALL
pseudo-operation. The assembler holds the EXTs internally as
indicators that it must generate IPs for the calls; the EXTs are not
l i s t e d .

The IPs for the CALL statements are generated as shown at the bottom of
the listing. Note that they, too, are in the Link segment, as
indicated by the > sign appended to their storage addresses.

Entrypoint Declaration in a Called Program: The resolution of a
caller's external symbols is completed from the callee's side by a
combination of the ENT or SUBR pseudo-operation and the callee's ECB.
The key function is to provide a correlation between the entrypoint
name and the ECB, which contains information necessary to the callee's
execution.

The ENT is used in this discussion; the SUBR statement could be used
with identical results. In the ENT pseudo-operation

label] ENT symbol-1[,symbol-2]

symbol-1 is the external name used by the calling program; it is this
symbol that enables the linker to resolve the external symbol of the
same name in the calling program. In addition to matching that symbol,
it provides the entrypoint-to-ECB correlation in one of three ways:

• It can match the name given in the label field of the called
program's ECB. In this case, symbol-2 is not used. The ECB's
starting address operand contains the label of the first
executable instruction. Figure 12-2 shows this configuration.

• It can match the name given in the label field of the called
program's first executable instruction. In this case, symbol-2
is required, and matches the name given in the label field of
the called program's ECB. The ECB's starting address operand
must a lso conta in the name given in symbol-1. This
configuration is shown in Figure 12-3.

• It can match neither of the above; it simply identifies
symbol-1 as an entrypoint. In this case, symbol-2 is required,
and matches the name given in the label field of the called
program's ECB. The ECB's starting address operand contains the
labe l o f the fi rs t execu tab le ins t ruc t ion . F igure 12-4
illustrates this option.

S e c o n d E d i t i o n 1 2 - 1 0

USING SUBROUTINES

000000

000420
000400
000605

(0001)
(0002)
(0003)
(0004)

SEG
ENT
ENT

S<
Cl

|STC| ARGT
000001 045421.000012S (0005) LDA X , *
000003 075421.000012S (0006) MPY X, *
000005 000015 (0007) PIMA
000006 01.000012 (0008) JMP SQ1
000007 000605 (0009) |STS| ARGT
000010 045421.000012S (0010) LDA X , *
000012 075421.000012S (0011) SQ1 MPY x,*
000014 000015 (0012) PIMA
000015 051421.000015S (0013) STA X2,*
000017 000611

000012
000015

000000

(0014)
(0015)

PRTN
DYNM X(3) ,X2(3)

000400;
(0016)
(0017)

LINK
ECB "STC|,,X,2ICUBEl

000020
000012 L__h
000002
177400

000420;

014000

000007 (0018) 1 ECB1 SQUARE _STS|,,X,2000020
000012
000002
177400
014000

000440 (0019) END

Entrypoint Declaration — Option 1
Figure 12-2

12-11 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

000000
000001

000420
000400
000605

045421.000012S

(0001)
(0002)
(0003)
(0004)
(0005)

SEG
ENT
ENT

fl ARGT|CUBE|—I
LDA X , *

000003 075421.000012S (0006) MPY x,*
000005 000015 (0007) PIMA
000006
000007
000010

01.000012
000605

045421.000012S

(0008)
(0009)
(0010)

JMP
ARGT
LDA

SQ1

x , *
|SQUARE|-

000012 075421.000012S (0011) SQ1 MPY X , *
000014 000015 (0012) PIMA
000015 051421.000015S (0013) STA X 2 , *
000017 000611 (0014) PRTN

000012
000015

(0015) DYNM X(3) ,X2(3)
1

000400; 000000
000020

(C016)
(0017)

LINK
ECB |CUBE|,,X,2|ECBC$|

000012
000002
177400
014000

> 0 0 0 0 0 7000420; (0018) ECB , 1 _
|ECBS$| ISQUAREl, ,X,2

000020
000012
000002
177400
014000

000440 (0019) END

Entrypoint Declaration — Option 2
Figure 12-3

Second Edition 12-12

USING SUBROUTINES

000420
(0001)
(0002)

SEG
ENT SQUARE JECBS $|—

000400 (0003) ENT CUBEjECBC$|——i
000000 000605 (0004) |STC| 1 ARGT
000001 045421.000012S (0005) LDA x,*
000003 075421.000012S (0006) MPY X , *
000005 000015 (0007) PIMA
000006 01.000012 (0008) JMP SQ1
000007 000605 (0009) |STS| 1 ARGT
000010 045421.000012S (0010) LDA X , *
000012 075421.000012S (0011) SQ1 MPY X , *
000014 000015 (0012) PIMA
000015 051421.000015S (0013) STA X 2 , *
000017 000611

000012
000015

(0014)
(0015)

PRTN
DYNM X (3) , X 2 (3)

000400;

v v \J V -_■ *_*

000000
000020

(0016)
(0017)

LINK
ECB

1
[STCJ,,X,2|ECBC$|

000012
000002
177400

0004205

014000

000007 (0018) ECB|ECBS$| |STSJ, ,X,2
000020
000012
000002
177400
014000

000440 (0019) END

Entrypoint Declaration — Option 3
Figure 12-4

12-13 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The re lat ionship among the ENT operands, the
instruction label, and the ECB is summarized below.

fi r s t e x e c u t a b l e

ENT First Inst Label ECB

ENT SYM_1
ENT SYM_1,SYM__2
ENT SYM_1,SYM_2

START
SYM_1
START

SYM_1 ECB START
SYM__2 ECB SYM_1
SYM_2 ECB START

Note that in Figures 12-2, 12-3, and 12-4, each
subroutine with two entry points, SQUARE and CUBE,
match the external labels declared or implied in the
whose code is shown in Figure 12-1.

example shows a
These entrypoints

c a l l i n g p r o g r a m

Argument Passing in External Calls

In the examples referred to in the previous section, each entrypoint
has a matching ECB, which suppl ies, in addi t ion to the star t ing
location, the location of the pointer to the first passed argument and
the number of arguments. Refer to the descr ipt ions of the ECB
statement in Chapter 6, and the DYNM statement in Chapter 4 for
a d d i t i o n a l i n f o rma t i o n .

Argument passing is initiated by the PCL or CALL statement in the
calling program; it is completed by the ARGT instruction in the called
subroutine. The ARGT must be the first executable instruction in any
subroutine that expects arguments. It must not be used in a subroutine
that expects no arguments ; tha t i s , a subrout ine tha t i s ca l led
without any APs following it, such as the TONL call in Figure 12-1.

Returning from an External Call

Part of the function of the call and return mechanism is to allocate
temporary storage in a stack area for use by the called routine, and to
deallocate this storage at the subroutine's completion. The stack area
contains the argument pointers, and can also accommodate any other
temporary data that may be needed for the callee's execution.

Any subroutine that is called by a PCL or CALL statement with the
expectation of returning to its caller must return by executing a PRTN
instruct ion. The PRTN instruct ion, in addi t ion to return ing to the
cal ler, deal locates the cal lee's stack space and returns i t to the
system for use by other users.

Second Edition 12-14

USING SUBROUTINES

THE SHORTCALL MECHANISM

As stated previously, the PCL/PRTN mechanism performs, at the call, a
great many functions related to argument passing, allocating stack
space, and switching between V mode and I mode if necessary. At the
return, some of these functions are performed in reverse. All of these
operations occur without any intervention on the programmer's part, but
while convenient from a programming point of view, they take an
appreciable amount of time. A small subroutine of, say, 10 to 15 lines
could conceivably take less time to execute than it would take to
transfer control to it and and back, and if this subroutine is called
very often in the course of a calling program's execution, the overhead
could become prohibitive.

This overhead can be significantly reduced by using an alternative call
and return mechanism known as the shortcall interface, or simply
shortcall. Shortcall requires that the called routine be coded in
assembly language; at Revision 21.0, the language of the calling
program can be only FORTRAN 77 (F77).

The shortcall interface is implemented differently for V mode and I
mode. The FORTRAN side of the interface is described in the FORTRAN
F77 Reference Guide; the assembly language side is described in the
following sections.

General Considerations

The assembly programmer, in order to properly handle subroutine
arguments in the called procedure, needs to be aware of the differences
between the standard call mechanism and the shortcall mechanism, and
needs to know about the alignment of certain types of data in the
calling program. A compilation listing of the calling program, in
expanded listing format, should always be available for determining
argument alignment and the sequence in which arguments are passed.

CALL/Shor tca l l D i f fe rences: Fo l lowing is a l i s t o f the main
differences between the PCL/CALL and shortcall mechanisms:

• V-mode calling programs execute a shortcall by means of a JSXB
instruction; I-mode programs use a JMP instruction.

• Shortcall does not switch execution modes. This means that a
V-mode calling program can call only V-mode subroutines, and an
I-mode calling program can call only I-mode subroutines.

• Shortcall does not use stack space in the called procedure for
argument passing. Arguments are passed differently in V mode
and I mode; the mechanisms are described in detail later in
this chapter.

1 2 - 1 5 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

A shortcalled procedure is not required to have an ECB, since
shortcall does not need information relating to execution mode,
number of arguments, and argument pointer location that is
normally contained in a called procedure's ECB.

The calling program is responsible for providing the necessary
space in its own stack frame for the number of arguments each
shortcalled procedure expects. In FORTRAN 77, this is done
through the SHORTCALL statement.

Argument Alignment: Certain datatypes can be either aligned (allocated
on halfword boundaries) or unaligned (allocated on other than halfword
boundaries) in the calling program. The shortcalled assembly language
procedure needs to be aware of the alignment of an argument in order to
retrieve it correctly.

Normally, only the following datatypes could be potentially unaligned:

• F77 CHARACTERS

• F77 LOGICAL*!

These datatypes are always passed as unaligned, regardless of whether
the actual arguments at each instance of a call are aligned or not.
All other datatypes are always aligned in the calling program and
passed as aligned data.

The setup instructions preparatory to a shortcall operation can be
determined by examining an expanded listing of the calling program.

Argument Passing in V mode

Arguments are normally passed by reference, that is, pointers to the
arguments are passed, rather than the arguments themselves. There are
four distinct cases of argument passing to shortcalled procedures in V
mode. The first case is that in which no arguments are being passed.
No argument processing is required in the called procedure. The
remaining three cases have arguments passed as follows:

One argument, aligned: A pointer to the argument is passed in the L
register. The called procedure code required to access the argument
i s :

DYNM TEMP(2) storage for address of argument
STL TEMP store argument address
inst TEMP,* any operation on argument

S e c o n d E d i t i o n 1 2 - 1 6

USING SUBROUTINES

The inst statement references the argument indirectly through TEMP.

One argument, unaligned: Special care must be taken in passing an
unaligned object, since an unaligned object requires a 48-bit pointer.
In this case, the calling procedure generates code to address the
argument in FARO, then loads the first two halfwords of this address
into the L register. The extension bit (bit 4) is set to 1 in this
address. It is up to the called procedure to test for this bit, and to
retrieve the proper address from FARO if it is set. The following code
can be used to do this:

DYNM TEMP(3)
STL TEMP
SAS
JMP# *+3
STFA 0,TEMP
i n s t TEMP,*

store L register
skip the JMP if bit 4 is 1
jump if bit 4 is 0
store FARO
any operation on argument

More than one argument: A list of pointers to the arguments is
constructed in memory by the caller. The space set aside for each
pointer in the list is always three halfwords, although for aligned
arguments only the first two halfwords are necessary. The address of
the first list element is passed in the L register.

The arguments are most easily accessed as displacements relative to the
XB register. However, since the XB register is used to store the
caller's return address, the contents of this register must be saved
before using it to access arguments, and restored just before the
return. The L register, used to pass the argument list pointer to the
callee, is used in the process of saving the return address, so it,
too, must be saved temporarily. The following code sequence performs
the required saves and sets up the XB register for argument access:

DYNM TEMP_1(2),TEMP_2(2)
STL TEMP_1
EAL XB%
STL TEMP_2
EAXB TEMP_1,*
i n s t XB%+0,*
i n s t XB%+3,*
i n s t XB%+6,*
EAXB TEMP_2,*
JMP XB%

save argument list pointer
save

return address
load saved pointer into XB
operation on first argument
operation on second argument
operation on third argument
restore return address to XB
return via XB

Note that the arguments are addressed in increments of three halfwords
(XB%+0, XB%+3, ...); the increment corresponds to the 48-bit length of
each pointer.

12-17 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

The V-mode argument passing mechanism may be affected if the
shortcalled procedure is a function that returns a value. See the
section Non-Register-Sized Return Value later in this chapter.

Register Saving and Restoring in V mode: Prime's usual convention for
procedure calling via PCL is for the caller to save any registers whose
contents are to be preserved over an external call. For efficiency's
sake, however, this is not the best pract ice for shortcal led
procedures.

For V-mode shortcalled procedures, the assembly programmer can assume
that the L, X and Y registers are safe to use without having to save or
restore them. No other registers are saved at the call site by the
caller; therefore, the called program must be wary of modifying
registers other than those just listed without saving and restoring
them. Unnecessary saves can be eliminated if, upon examination of the
caller's code, it is found that modification of unsaved registers does
no damage.

Shortcall in I Mode

The implementation of the I-mode shortcall interface is designed to
take advantage of the I mode general register based architecture.
There are therefore differences between the shortcall interfaces in V
mode and I mode. (For purposes of this discussion, I mode and IX mode
are considered to be the same architecture.)

Call and Return Mechanism: The first difference between shortcalling
in V mode and I mode is that of the mechanism used to transfer control
to the callee and back. The I-mode return address is passed in RO, not
the XB register. The code sequence used by the caller to invoke an
I-mode shortcalled procedure, and the code sequence needed to return
from it are:

C a l l e r C a l l e e

E A R 0 , * + 4 S T 0 , T E M P
J M P < c a l l e e > J M P T E M P , *

The EAR/JMP code sequence is faster than a JSXB. Also, saving and
restoring RO if it is needed for computation is more efficient than
saving and restoring the XB register. If RO is not needed by the
callee for computation, it need not be saved, and the callee can return
via a JMP R0%.

Argument Passing: Arguments are normally passed by reference (similar
to V mode). However, two and three halfword pointers (pointers to

S e c o n d E d i t i o n 1 2 - 1 8

USING SUBROUTINES

aligned and
in I mode.

unaligned arguments, respectively) are treated separately

Aligned Arguments: Aligned arguments are passed via the general
registers Rl through R4. This means that a maximum of four pointers to
aligned arguments can be passed via registers to a shortcalled
procedure. For example, if pointers to three 32-bit integers A, B, and
C, are passed in general registers 1, 2, and 3, respectively, the
following instructions could operate on them:

r
L 6,R1% load A into GR6
M 6,R2% multiply A by B
PIM position after multiply
A 6,R3% add C to A*B

If more than 4 aligned arguments are passed, Rl through R3 are used for
the first three as shown above, and R4 contains a pointer to a
memory-resident list (in the calling program) of two-word pointers that
point to the 4th through last arguments. Thus, to continue the
previous example, if a fourth and fifth argument D and E were to be
passed, they would be referenced as follows, after the code shown
above:

EAXB R4%
S 6 , X B % , *
D 6 , X B % + 2 , *

store pointer in XB
subtract D from A*B+C
divide A*B+C-D by E

Unaligned Arguments: Unaligned arguments are passed by reference via
the FARs: FARO and FAR1, in sequence. The FARs are stored by STFA
instructions into 48-bit indirect pointers in the callee's address
space, and the arguments are addressed indirectly through these
pointers:

DYNM PTR__1(3) ,PTR_2(3)
STFA 0,PTR_1
STFA 1,PTR_2
inst PTR-1,*
inst PTR_2,*

address first argument
address second argument

If more than two unaligned arguments are passed, a pointer to the first
is passed via FARO, and FAR1 contains a pointer to a memory-resident
list (in the calling program) of 48-bit pointers to the remaining
unaligned arguments. The second through last arguments are addressed
indirectly through the XB register:

12-19 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

DYNM PTR__1 (3) , PTR__2 (3)
STFA 0,PTR_1
STFA 1,PTR_2
EAXB PTR-2,*
i n s t PTR_1,*
i n s t XB%,*
i n s t XB%+3,*
i n s t XB%+6,*

load pointer into XB
address first argument
address second argument
address third argument
address fourth argument

Mixed Arguments: Argument order is not strictly adhered to if a
mixture of aligned and unaligned arguments is passed to an I-mode
shortcalled procedure: aligned arguments are always passed via the
general registers Rl through R4, unaligned arguments are always passed
via the FARs. Within the aligned and unaligned classes of arguments,
however, argument order is maintained.

Register Saving and Restoring: The callee is generally free to use any
registers used to pass arguments without restoring them before
returning. If the callee needs registers other than these, however, it
is the callee's responsibility to save and restore them. Here, too, as
in V mode, unnecessary saves can be eliminated if, upon examination of
the caller's code, it is found that modification of unsaved registers
does no harm.

Shortcalled Functions in V mode and I mode

The primary difference between subroutines and functions is that a
function returns a value while a subroutine does not. Because Prime
supports multi-language programming and procedure calling (PCL) between
the V-mode and I-mode instruction sets, certain mechanisms by which
functions return their values have been defined and must be adhered to.
All types of functions, whether compiled or written in assembly
language, called by PCL or shortcalled, must return their values
according to these mechanisms; the programmer of a shortcalled
function therefore needs to be aware of how these mechanisms work.

There are two classes of function return values: one class is those
values that fit exactly into registers; the other is those that do
not. Different mechanisms are used to return each of these classes of
values. General guidelines are given here to help the assembly
programmer in determining how to return function values. If unsure of
how the caller expects the function to return its value, the programmer
can compile the calling program, requesting an expanded listing, and
can then examine the generated code.

Register-Sized Return Values: The types of values that are returned in
registers from cal led funct ions include integers, floating point
values, and other datatypes whose bit lengths match that of a register.
Note carefully that what is passed to a function is a set of one or

S e c o n d E d i t i o n 1 2 - 2 0

USING SUBROUTINES

more argument pointers, while what is passed from the function is a
return value. The data types returned and the registers in which they
are expected by a FORTRAN caller are shown below.

Data Types Returned

integer*2; logical*2;
logical*l (register bit 8)

integer*4; logical*4;

real*4

rea l *8

real*16

Expected Register
(I mode in parentheses)

A (GR2H)

L (GR2)

FAC (FAC1)

DFAC (DFAC1)

QFAC

It is up to the assembly programmer to ensure that the shortcalled
function return value is loaded into the appropriate type of register
before returning to the caller.

Non-Register-Sized Return Values: If the return value does not fit
exactly into a register, a pointer to a compiler-created space in the
caller's stack is passed to the shortcalled function. This space is
where the result value of the function must be put by the callee. The
pointer is passed as the first argument in the V-mode function's
argument list, and pointed to, as usual, by the L register. If other
arguments are normally passed to the shortcalled function, these
arguments are all moved up one position in the argument list, so that
function argument 1 takes the space normally taken by subroutine
argument 2, function argument 2 that of subroutine argument 3, and so
on.

In I mode, the function return value pointer is passed as the first
aligned argument, in Rl. R2 through R4 will then contain the
function's usual aligned arguments in the manner described above,
except that they are, as in V mode, moved up one position in the
argument list. Since R4 remains the last register that can be used to
pass aligned arguments, the maximum number of arguments that can be
passed to a shortcalled function of this type before the caller has to
resort to a memory-resident argument list is reduced to 3.

12-21 Second Edition

13
Program Linking

When the assembler has completed its processing of one or more assembly
language source programs, the object files it has created must be
linked to create a file that can be loaded into memory and executed.
The Prime linkers, SEG and BIND, combine object files whose pathnames
are specified in linker subcommands into executable entities known as
runfiles. Runfiles created by SEG are invoked by issuing the SEG
command, specifying the pathname at which it was saved when linking was
completed; those created by BIND are invoked by the RESUME command,
also specifying the pathname at which it was filed. Unless you specify
otherwise, both SEG and BIND obtain the assembled object files from,
and store their respective runfiles in, the home directory to which you
are attached when you invoke the linker.

This chapter briefly describes the characterist ics of the two l inkers
and shows some examples of their use in doing simple linking tasks.
For information on more complex applications, refer to the SEG and LOAD
Reference Guide and the Programmer's Guide to BIND and EPFs♦

Both SEG and BIND accept V-mode and I-mode object files as input to the
linking process (I mode, for the purposes of this chapter, should be
understood to also include IX mode). SEG can also l ink programs
written in the older R mode, but these programs must be converted to
V mode or I mode before BIND can link them. There is a discussion of
conversion requirements and procedures in the Programmer's Guide to
BIND and EPFs.

1 3 - 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

DIFFERENCES BETWEEN SEG AND BIND

One of the major differences between the two linkers is that SEG, in
addition to performing the linking function for external references,
common areas, and the like, also creates an image of (loads) the linked
program into memory and then writes an image of memory to the runfile.
The result is that, for default links, all executable programs are tied
to the same memory segment (segment 4001). Therefore, if two programs
were linked with SEG using the default segment assignment, it is not
possible to interrupt the execution of one program, invoke the other,
and then return to the first, since the second program will have
overlaid part or all of the first.

BIND, on the other hand, performs the linking functions, but does not
tie the linked code to any specific memory segment. It creates
imaginary segments whose run-time segment numbers are determined by
PRIMOS. BIND leaves the loading part of the linking and loading task
for PRIMOS to perform when the program is invoked. PRIMOS loads the
invoked program into any unoccupied memory segment it can find. This
enables you to interrupt a program executing in one segment and load a
second program (into a different segment, since PRIMOS considers the
first program's segment still to be occupied) and execute it. You can
then return to the first program, since it has not been overlaid by the
second.

A second major difference between SEG and BIND is that BIND, by
default, creates sharable procedures by separating executable code and
modifiable data into separate segments. SEG can create sharable
procedures, but it is a complex activity that includes specification of
certain segment numbers, resharing of the PRIMOS operating system, and
agreements between the programmer and the System Administrator. The
procedure is described in detail in the SEG and LOAD Reference Guide.

There are many other differences between the two linkers, most of which
make BIND the linker of choice over SEG. These differences are
summarized in Chapter 1 of the Programmer's Guide to BIND and EPFs and
described in more detail in Volume I of the Advanced Programmer's
Guide.

USING THE SEG LINKER

The SEG linker is invoked by the PRIMOS SEG command, specifying the
-LOAD option:

SEG -LOAD

Linking with SEG is an interactive procedure in which, for each
subcommand, SEG issues a dollar sign ($) prompt. Figure 13-1
illustrates the procedure. In it, the program illustrated in Chapter
12 (named CALLSQ) is linked with its called subroutine module

S e c o n d E d i t i o n 1 3 - 2

PROGRAM LINKING

(containing the entrypoints SQUARE and CUBE) to create the executable
program CALLSQ.SEG. The resulting link map is shown in Figure 13-2.

USING THE BIND LINKER

The BIND linker is invoked by the PRIMOS command BIND:

BIND [options]

Linking with BIND can be interactive, working much like SEG, or you can
include a series of options on the command line. In the latter case,
the options specify the functions that would have been performed in
response to subcommands in the interactive mode. When in the
interactive mode, BIND issues a colon (:) as a prompt for each
subcommand. Both methods are shown in Figure 13-3, using the same
program and subroutine as in the SEG example above. The resulting link
map is shown in Figure 13-4.

13-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

OK, SEG -LOAD
[SEG Rev. 21.0 Copyright (c) 1986, Prime Computer, Inc.]
$ LO CALLSQ (Link calling program CALLSQ.BIN)
$ LO SQCU1 (Link subroutine module SQCU1.BIN)
$ LI (Link system library routines TODEC and TONL)
LOAD COMPLETE
$ SAVE (File CALLSQ.SEG)
$ MAP CALLSQ.SMAP (Create map file — optional)
$ Q (E x i t)
OK,

Sample SEG Terminal Session
Figure 13-1

*START 4002 000004 *STACK 4001 001206 *SYM 000016

SEG. # T Y P E L O W HIGH TOP
4001 PROC## 001000 001222 001204
4002 D A T A 0 0 0 0 0 0 000115 000115

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.
4002 000004 4001 001000 000012 000034 4002 177400
CUBE 4002 000034 4001 001032 000020 000040 4002 177434
SQUARE 4002 000054 4001 001041 000020 000040 4002 177434
TODEC 4002 000074 4001 001052 000020 000022 4002 177474

DIRECT ENTRY LINKS
TlOB 4001 001176 TONL 4001 001202

COMMON BLOCKS

OTHER SYMBOLS

Sample SEG Link Map
Figure 13-2

Second Edition 13-4

PROGRAM LINKING

Using BIND interactively:

OK, BIND
[BIND Rev. 21.0 Copyright (c) 1986, Prime Computer, Inc.]
: LO CALLSQ (Link calling program CALLSQ.BIN)
: LO SQCU1 (Link subroutine module SQCU1.BIN)
: LI (Link system library routines TODEC and TONL)
BIND COMPLETE
: MAP CALLSQ.MAP (Create map file — optional)
: FILE (File CALLSQ.RUN and Exit)
OK,

Using BIND with command line options:

OK, BIND CALLSQ -LO CALLSQ SQCU1 -LI -MAP CALLSQ.MAP
BIND COMPLETE
OK,

Sample BIND Terminal Session
Figure 13-3

13-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Map of CALLSQ

START ECB: -0002/000004

Segment Type
-0002 DATA
+0000 PROC

Low High Top
000000 000115 000116
001000 001204 001206

PROCEDURES
Name

CUBE
SQUARE
TODEC

ECB address Initial PB% Stack size Link size Initial LB%
■0002/000004
•0002/000034
■0002/000054
■0002/000074

+0000/001000 000012 000034 -0002/177400
+0000/001032 000020 000040 -0002/177434
+0000/001041 000020 000040 -0002/177434
+0000/001052 000020 000022 -0002/177474

DYNAMIC LINKS:
T10B +0000/001176
TONL +0000/001202

COMMON AREAS:

OTHER SYMBOLS:

UNDEFINED SYMBOLS:

Sample BIND Link Map
Figure 13-4

Second Edition 13-6

14
Program Execution and

Debugging

PROGRAM EXECUTION

After your program has been assembled and linked, you can load it for
execution in any of several ways.

• From command level; use the SEG command for programs linked
with the SEG linker, or the RESUME command for programs linked
with the BIND linker. Refer to the PRIMOS Commands Reference
Guide for descriptions of these commands. (If your linked
program has been placed in the command directory CMDNCO, you can
also invoke it as an external command by simply supplying its
name as if it were a PRIMOS command.)

• From another program, using any of several calling sequences;
this procedure is described in detail in Volume III of the
Advanced Programmer's Guide. Additional information can be
found in the Programmer's Guide to BIND and EPFs.

• From command level in conjunction with one of the assembly
language debugging utilities VPSD or IPSD; this method is
described in this chapter.

1 4 - 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

PROGRAM DEBUGGING

There are two interactive debugging utilities that you can use for
troubleshooting your programs. One of them, VPSD, is used for V mode
programs; the other, IPSD, is an extension of VPSD that handles I mode
(including IX mode) as well as V mode programs. IPSD differs from VPSD
in its method of invocation and in some of its subcommands and
displays. It is otherwise identical to VPSD.

The following sections describe the invocation methods for VPSD, the
VPSD subcommands, and the IPSD extensions.

Using VPSD

VPSD is a symbolic routine that can handle the PRIME-400 and 50 Series
segmented addressing modes (except I mode), and all of the PRIME-300
addressing modes.

There are two versions of VPSD: stand-alone VPSD and SEG's VPSD. Both
reside in segment '4000. There are three ways to enter VPSD, each of
which has slightly different consequences for debugging:

Act ion

Load the object file using SEG's
loader. Then return to # level
with the RE command and issue
the SEG command PSD. Obtain the
starting address of SEG's VPSD
with the VERSION command.
Memory may now be examined and
breakpoints set. Type EX to
start the program. If it crashes,
issue the PRIMOS level PM com
mand to obtain the data at crash
time. Then issue the PRIMOS com
mand START using SEG's VPSD
starting address.

Load the runfile and enter VPSD
via the SEG filename 1/1 com
mand.

Usage/Consequence

Used when no runfile exists.
When EXECUTE is given, the regis
ters are as SEG initialized them.
Preserves the entire program
contents exactly as it was at
the time of the crash, except
for the program counter whose
value you obtain via the PM
command.

Used when runfile exists. When
EXECUTE is given, the registers
are as SEG initialized them.

^ >

Load and execute the runfile
using SEG. When the program
crashes, use the PRIMOS command
VPSD to call the stand-alone
version of VPSD.

Use only if SEG's VPSD has been
destroyed. The registers are
not preserved.

Second Edition 14-2

PROGRAM EXECUTION AND DEBUGGING

VPSD Subcommand Line Format

Each VPSD subcommand is a one or two letter operation followed by one
or more operands. Separators may be spaces or commas, and values may
be omitted by including extra commas. Subcommands may be terminated by
a carriage return or a semicolon.

The ACCESS subcommand differs from the others in that it remains in
control and allows you to examine and/or alter more than one location
without returning to subcommand mode (signalled by the prompt
character). The next location to be accessed is selected by the
terminator used. (See ACCESS for details.)

A question mark (?) may be used to abort a subcommand string and
return to subcommand level.

If more than five octal digits are entered, only the last 16 bits are
used.

Effective Address Formation: VPSD processes input and output in all
addressing modes except I mode. The mode is set by the MODE
subcommand.

When an index register is needed, the current value of the X or Y
register is used.

When VPSD prints an address, it applies the same address formation
process as the hardware, using the current values of the registers.
For relative addresses, the location set by the last use of the ACCESS
subcommand is used as the value of the P register.

Relocation Constant: VPSD can process addresses in a relocatable mode
by maintaining a relocation constant which points to the start of a
module. All addresses that are preceded by > are relative to this
relocation constant. For a relocation constant of '1000, both A >50
and A 1050 would address location '1050.

The relocation constant is set by the RELOCATE subcommand. Setting the
relocation constant to O disables this mode.

For all output, any address larger than the relocation address is
displayed as >n, where n is the address minus the relocation address.

Input/Output Formats: The default subcommand line scan is octal, but
VPSD can accept input parameters and print output values in several
other formats. The format is established by typing a colon followed by
a single format letter. All input to the right of that format
specifier is interpreted in that format until you type a new format
specifier or a terminator. Format specifiers affect only the current
input line, but affect all output lines until you type a new format
specifier. Table 14-1 describes the format specifiers. The following
example illustrates their effects.

1 4 - 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table 14-1
Input/Output Formats

Format Code I n p u t Output

ASCII :A Two characters accepted Two characters are
first may not be: printed. An @ is sub
> = @ %, .NL./? + -: *() stituted for a non
or blank p r i n t i ng cha rac te r
Second is required and may
not be:
/, ?, <CR>
Note: to input ASCII char
acters in any format use
'cc (single quote followed
by two characters)

B i n a r y :B Takes a sequence of up to Prints a sequence of
16 l's and 0's sixteen l's and 0's

Decimal :D Accepts up to five decimal
(0-9) d ig i ts

Pr ints decimal digi ts

Hex :H Accepts up to four hexadec Prints hexadecimal
imal (0-9, A, B, C, D, E, F) d i g i t s
d i g i t s

Oc ta l :0 Accepts up to six octal
(0-7) d ig i ts

Pr in ts oc ta l d ig i ts

Symbol ic :S Symbol ic inst ruct ions
(See note)

Symbol ic ins t ruc t ions

AP :P Symbol ic inst ruct ions Prints address pointers

Long :L Accepts up to 11 octal Pr in ts 32-b i t octa l
i n t e g e r s i n t e g e r s

Note: Constants entered in :S mode are octal .

^ t

Second Edition 14-4

PROGRAM EXECUTION AND DEBUGGING

Fill and Dump Example:

F 100 200 :HAFAF Fills octal locations 100 to 200 with
hexadecimal digits AFAF

D 120 130 The display on the terminal will be in
hexadecimal.

Symbolic Instruction Format: enables you to display standard PMA
symbolic instruction format for output and to enter symbolic input in
ACCESS subcommands. The only restrictions are:

• Expressions — only + and - operations

• No literals

• Input is valid only in ACCESS mode; e.g., S 100 200 :SA1A is
not valid

• The suffixes +1C and +nB may be used to indicate character and
bit offsets

Constants entered in :S mode are octal

Subcommand Operands: Subcommand operands may be constants, constant
expressions, or symbols. The format of a constant is:

[: f o r m a t] [>] + d i g i t s [: f o r m a t]
ASCII-constant

where:

format = format specifier (see Table 14-1)

> = relocatable mode

ASCII-constant = two-letter constant in the format described in
Table 14-1

digit = decimal, octal, binary or hexadecimal, depending on which
format is in control

The format of a constant expression is:

constant [+ constant]

Current Location Pointer: In ACCESS mode, a current location pointer
is maintained, starting with the value of the start-address operand of
the ACCESS cmmand. The location pointer determines the next location
to be accessed.

1 4 - 5 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

During each access operation, VPSD replaces the value in the addressed
location with the new value (if specified) and uses the line terminator
to compute the next value of the current location pointer. For the
comma or CR line terminators, the pointer is incremented after each
access. Other line terminators provide different options.

VPSD Subcommands

This section gives a brief description of each of the VPSD subcommands.
When entering subcommands, use only the underlined letter or letters in
the subcommand.

^ ACCESS address

Accesses a word in memory. VPSD displays address and its contents and
then waits for keyboard input in the following form:

[:format-symbol] [value] [:new-format-symbol] terminator

:format-symbol is one of the optional input/output format symbols (see
Table 14-1). The new format takes effect immediately. For example,
:HAF enters the hexadecimal value AF, regardless of the previous
input/output mode.

Value replaces the contents of the addressed location. The format is
the current input/output format.

:new-format-symbol is one of the optional input/output format symbols
(see Table 14-1). The new format takes effect immediately upon all
subsequent output until a new format symbol is entered.

Terminator is one of the characters shown in Table 14-2.

Long instructions are entered and printed in the same way as for the
assembler; for example, LDA% 2000.

^ BREAKPOINT location

Sets a breakpoint at the specified location. If the program is later
executed and control reaches the breakpoint location, VPSD displays CPU
status and awaits further subcommands. Up to ten breakpoints may be
inser ted.

S e c o n d E d i t i o n 1 4 - 6

PROGRAM EXECUTION AND DEBUGGING

Table 14-2
VPSD Terminators

Terminator Function

CR

r I or?

.n(CR)

.-n(CR)

Alters contents of current location (if a value is
given), moves to current location +1 and prints its
contents.

Alters contents of current location (if a value is
given), moves to current location -1 and prints its
contents.

Exits from access mode. Does not close current
loca t ion .

Moves to current location +n and prints its contents (n
is octal).

Moves to current location -n and prints its contents (n
is octal).

For memory reference instructions of the form "INST*
location" only. Saves a return address (current
location +1), moves to the effective address location,
and p r in t s i t s con ten ts . Subsequen t accesses
(terminated by CR, comma, , . or . -) are relative to
the effective address. A \ returns to the return
address.

Goes to effective address without indirection, but
saves current location as return address.

Returns to the return address saved by the last @.

Returns to the return address saved by the last (.

For memory reference instructions only; calculates and
prints the effective address and its contents. No
change is made to the current location or its contents.
If the instruction references a register, the contents
of the register are printed.

14-7 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

^ BREGISTER

Displays the contents of the procedure base, stack base, link base and
temporary base registers.

^ COPY source-start source-end target

Copies the block of memory from source-start to source-end into a new
block of memory at target■ If target lies between source-start and
source-end, the non-overlapped portion is propagated through the target
area. The size of the target area is always equal to the size of the
source area.

Example:

F 1000 1010 :HFFFF Fill locations 1000-1010 with hex FFFF
F 1011 1020 :HAAAA Fill locations 1011-1020 with hex AAAA
D 1000 1020 D isp lay l oca t ions 1000-1020

C 1010 1016 1012 Propagate alternate words of FFFF and AAAA
D 1000 1020 D isp lay l oca t i ons 1000-1020

^- DUMP block-start block-end [words-per-line]

Displays the contents of the block of memory at locations block-start
through block-end on the user terminal or optionally in an external
fi l e .

Words-per-line is the number of words to be printed per line.

You must open a file before dumping to it (see the OPEN subcommand) .
If there are several files open, dump will use the last one opened.
Close the dump file before ending your session. If you have used VPSD
to open a file for program use and you wish to dump to a terminal,
issue an OPEN subcommand with no parameters prior to issuing the DUMP
subcommand.

The default output format is eight octal words per line, preceded by
the octal address of the first word on the line. Repetitious words are
suppressed unless words-per-line is specified. If you request dump
output in symbolic (:S) format, specify a words-per-1ine value of 3 or
less for a more readable display.

Example:

$ 0 DMPFIL 1 2 Open dump file
$ D 1000 2000 Dump locations '1000 through '2000
$ 0 0 1 4 C l o s e d u m p fi l e

S e c o n d E d i t i o n 1 4 - 8

PROGRAM EXECUTION AND DEBUGGING

^ EFFECTIVE block-start block-end address [mask]

Searches for an instruction with the specified effective address in the
block from block-start to block-end, under an optional 16-bit mask.

If no mask is specified, the entire address is tested. When a match is
found, the instruction and its address are printed at the user
terminal. The search continues until location block-end has been
tested.

Mask is a 16-bit word which may be expressed in any of the valid
formats.

EFFECTIVE is useful in finding locations where a particular address is
referenced.

The current values of the X and Y registers are used in the
c a l c u l a t i o n . I n s t r u c t i o n s a r e i n t e r p r e t e d i n t h e c u r r e n t
address/instruction mode as set by the MODE subcommand and shown in the
keys by the PRINT subcommand.

^ EXECUTE

Begins execution of a segmented program by passing control to SEG. SEG
sets the initial register values; any other value at the time EX is
issued is lost.

^ FILL block-start block-end constant :Format

Fills the block of memory locations block-start through block-end with
the specified constant. If block-end does not exceed block-start only
the first location is filled. :Format must be specified if you do not
want the octal default. Specifying a format changes subsequent output
formats. FILL is useful to test data area usage by pre-filling it with
a visual pattern.

Example:

F 1000 1007 :HFFFF
D 1000 1007 1

4001/1000 FFFF

^ FA regno

Accesses field address register regno. New values may be entered to
replace old ones. Carriage return advances to the next register, and ^_
goes back to the previous one. A _^ will switch to access mode and
display the location referenced by the field address register in ASCII.
A) will return to FA mode.

14-9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

^ FL regno

Accesses field length register regno. New values may be entered to
replace old ones. A carriage return advances to the next register and
a 2. goes back to the previous one.

^ KEYS value

Sets the contents of the keys register to the specified octal value.
See Chapter 5 of the System Architecture Guide for the format of the
Keys register.

^ LB seg-no word-no

Loads the link base register with segment number seg-no and word number
word-no.

^ LIST address

Prints the contents of address in the current output format.

Unlike ACCESS, LIST does not transfer the pointer to that location, a
very useful feature when you wish to examine a location without going
there.

^ MODE D16S
D32S
D32R
D64R
D64V

D16S means use 16S address mode; D32S, use 32S address mode; D32R,
use 32R address mode; D64R, use 64R address mode; and D64V, use 64V
address mode.

MODE controls the way effective addresses are interpreted by setting
the address mode bits of the Keys register. Other Keys register bits
are unaffected. MODE gives you a way of setting just the address mode.

D64V prints the segment and word number for all addresses (initial
segment number is '4000) and interprets instructions as the Prime 400
and 50 Series hardware does. Base register references for all long
instructions are printed as PB%, SB%, LB%, or XB%. Short instructions
which reference SB or LB print SB or LB as part of the address.

^ NOT-EQUAL block-start block-end n-match [mask]

Searches memory between block-start and block-end for words not equal
to n-match under an optional 16-bit mask.

S e c o n d E d i t i o n 1 4 - 1 0

PROGRAM EXECUTION AND DEBUGGING

The masking function is a 16-bit logical AND. If no mask is specified,
the entire word is tested. When a non-match is found, the address and
its contents are typed out and the search continues to block-end.

^ OPEN file-name file-unit key

Opens file-name on file-unit to be used as a DUMP output file. key can
be: 1 (open for reading), 2 (open for writing), 3 (open for reading
and writing) or 4 (close).

These key values are the same as for the PRIMOS OPEN command.

^ PRINT

Prints CPU/VPSD parameters in octal as follows:

prgctr: breakpoint a-reg b-reg x-reg keys relcon y-reg

prgctr the program counter at the time of the breakpoint

relcon the current value of the access mode relocation constant

^ PROCEED [address] [a-reg] [b-reg] [x-reg] [keys]

Continue execution from breakpoint. Removes the current breakpoint if
there is one, optionally sets a new breakpoint at address, and issues a
RUN subcommand to the current program counter address. Registers and
keys are loaded with specified values, if any.

^ QUIT

Returns to the PRIMOS operating system. In SEG's VPSD, QUIT returns to
SEG command level.

^ RELOCATE value
Sets a new value for the access-mode relocation counter.

^ RUN [start-add] [a-reg] [b-reg] [x-reg] [keys]

Runs the executable program beginning at start-add. Prior to program
entry, a-reg, b-reg, x-reg, and keys are optionally loaded with
specified values. Control does not return to VPSD unless a breakpoint
is encountered.

Use the SN subcommand before issuing R to specify the segment in which
to run; start-add is the 16-bit offset within that segment.

1 4 - 1 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

SB seg-no word-no

Loads the stack base register with segment number seg-no and word
number word-no.

^ SEARCH block-start block-end match-word [mask]

Searches memory from block-start to block-end for words equal to
match-word under an optional 16-bit mask.

If a mask is not specified, the entire word is tested. When a match is
found, the address and its contents are displayed, and the search
continues until location block-end has been tested.

^ SN seg-no

Use seg-no as the segment number for all subcommands where only a
halfword offset is entered, such as UPDATE, DUMP, etc.

^ UPDATE location contents

Puts contents into location and prints the old and new contents of
locat ion.

^ VERIFY block-start block-end copy
Verifies memory from block-start through block-end against a copy
starting at copy. The program displays the address and contents of
each location which does not match the corresponding word in the copy.

The format of a VERIFY printout is:

location block-contents copy-contents

^ VERSION

Prints the version number and restart address of the VPSD you are
using. If your program goes into a loop or crashes after a RUN
subcommand, you can issue a PR subcommand, starting at this restart
address. This causes a pseudo breakpoint, saving the registers and
entering VPSD. Only the program counter register value will be lost,
and even this may be found by issuing a PRIMOS P command prior to
restarting VPSD.

^ WHERE

Lists all currently installed breakpoints and their remaining proceed
counts. A proceed count of one is not listed.

S e c o n d E d i t i o n 1 4 - 1 2

PROGRAM EXECUTION AND DEBUGGING

^ XB seg-no word-no

Loads temporary base register with segment number seg-no and word
number word-no.

^ XREGISTER value

Loads the X register with value — for example, before executing a RUN
subcommand or doing an effective address calculation.

^ YREGISTER value
Loads value into the Y index register.

^ ZERO [location]

Removes the breakpoint at the specified location.

If location is omitted, Z removes the breakpoint at the current
program-counter location. (P will show the current location.)

1 4 - 1 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Using IPSD

The following sections describe IPSD, its features that are not found
in VPSD, and how to use it. Also found here is information on the use
and purpose of IPSDO and IPSD16. These two utilities provide the same
level of support for segment 4000 programs and data as is currently
found in VPSD and VPSD16.

IPSD is an extension of VPSD that supports the debugging of I mode
programs. IPSD can be used on both SEG runfiles EPF runfiles. It
supports the V mode quad instructions and all of I mode. (This
includes GRR, 32IX, and the I mode instructions added for C support.)
IPSD also contains some additional features that improve upon VPSD's
user interface. Since the IPSD user interface is nearly identical to
that of VPSD, only the differences between VPSD and IPSD are described.

When IPSD is invoked, an outer shell interprets the command line, maps
in the user program, and then invokes the actual IPSD debugger. The
shell passes command lines to the user program and can provide for the
execution of the user program as a command function if so desired.

Invoking IPSD

IPSD is invoked like any other command. Its usage is as follows

IPSD [pathname] [program—command__line] [-FCN]

Where:

pathname is the pathname of an EPF or segdir program to be mapped in
and executed under IPSD. The .RUN and .SEG suffixes are optional.

program__command__line is the command line expected by the program. (See
the sections below on passing user program command lines.)

The -FCN option instructs IPSD to execute the user program as an EPF
command function. (See the section below on execution as a command
func t ion .)

Invoking IPSD With No Arguments: If IPSD is invoked with no arguments,
then the debugger is merely started up and no user program is mapped
in. The initial register settings are as follows:

PB - 4000/0
LB = current LB
SB = current SB
XB = 7777/0

S e c o n d E d i t i o n 1 4 - 1 4

PROGRAM EXECUTION AND DEBUGGING

Passing Commandlines to an EPF User Program: IPSD will pass a command
line to the user program if requested by the user. The user can
request this by specifying the command line as the program—command__line
argument to the IPSD command. For example,

OK, ipsd my_prog.run foo bar -option a -option b

In this case, the program my_prog will be invoked with the command line
foo bar -option a -option b.

IPSD assumes that an EPF requiring a command line receives this command
line via the standard EPF method, i.e. as the first argument to the
main entrypoint of the EPF program. If IPSD is invoked upon an EPF
user program that expects at least 1 argument, then IPSD always expects
the user to provide a command line for the user program. If the user
does not supply a command line, IPSD will ask for one. For example, if
my_prog is an EPF that expects 1 or more arguments to its main
entrypoint, then this is what IPSD would do:

OK, ipsd my__prog. run

[IPSD Rev. 21.0.0 Copyright (c) Prime Computer, Inc. 1986]

$ex
Your EPF program accepts arguments, one probably being its
command line argument. Enter your program's command line,
if any.

>x y z (enter my_prog's command line)

In this example, the character string x y z would be passed as the
first argument to my__prog. If my__prog does not care about the command
line, enter a carriage return at the prompt.

1 4 - 1 5 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Another possibility is that an EPF user program obtains its command
line by calling RDTK$$. If IPSD is invoked on such a program with a
user program command line, then IPSD will request reentry of the
command line, since it must be provided interactively. For example, if
my_prog is an EPF whose main entrypoint does not expect any arguments,
this is what IPSD would do:

OK, ipsd my_prog.run x y z

[IPSD Rev. 21.0.0 Copyright (c) Prime Computer, Inc. 1986]

$ex
If your program requires a command line, then it obtains it
by using RDTK$$. In this case, it must be entered
interactively. Enter your program's command line, if any.

>x y z

In this example, the Primos routine COMANL is called in order to get
the character string x y z into the command line buffer accessed by
RDTK$$. That is why the command line must be entered interactively.

Passing Commandlines to a Seg Runfiles: IPSD has no way of knowing
whether or not a seg runfile requires a command line. For this reason,
if the user program is a seg runfile, IPSD will always ask the user for
a command line whether or not one is actually required. Here is an
example of executing a seg runfile under IPSD:

OK, ipsd my__prog.seg

[IPSD Rev. 21.0.0 Copyright (c) Prime Computer, Inc. 1986]

$ex
Enter your program's command line, if any.

>x y z

If my_prog, indeed, required a command line, then the character string
x y z would be made available to it via the RDTK$$ interface. If
my_prog did not require a command line, enter a carriage return.

S e c o n d E d i t i o n 1 4 - 1 6

PROGRAM EXECUTION AND DEBUGGING

f If you mistakenly try to supply a seg runfile with a command line via
the IPSD command, then IPSD will do this:

OK, ipsd my_prog.seg x y z

[IPSD Rev. 21.0.0 Copyright (c) Prime Computer, Inc. 1986]

$ex
If your program requires a command line, then it obtains it
by using RDTK$$. In this case, it must be entered
interactively. Enter your program's command line, if any.

>x y z

As stated earlier, a command line to a seg runfile must be supplied
^* interactively. That is why IPSD asks the user to reenter the command' l i n e .

Executing an EPF Program as a Command Function: IPSD can be instructed
to invoke an EPF program as a command function. The specification of
the -FCN command line option to IPSD causes this to occur.

When -FCN is specified, the COM—PROC__FLAGS argument to the main
entrypoint of the EPF has the .COMMAND_FUNCTION_CALL flag set to 1.

Note

A seg runfile cannot be 'called as a command function

Features Supported by IPSD But Not VPSD

The items described in the following sections are IPSD extensions over
those described previously for VPSD.

Instructions and Instruction Sets: IPSD supports the V mode quad
precision floating point instructions and all of the I-mode instruction
set. This includes GRR, 32IX, and the instructions added for C
language support.

^ The MOde Subcommand:
IPSD supports the subcommand MO D32I to set the current address mode to
I mode. If IPSD is invoked without specifying a user program, then the
address mode defaults to I mode. Otherwise, the address mode is that
of the user program's main program block.

1 4 - 1 7 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

I-Mode Breakpoints:

IPSD supports two types of breakpoints, V-mode and I-mode. The nature
of the breakpoints is determined by the address mode in effect when the
EX (execute), PR (proceed), or R (run) subcommand is given.

Note

An I-mode breakpoint occupies two words, while a V-mode
breakpoint occupies only one word. For this reason, you must
exercise care in the placement of breakpoints in I-mode
programs. You must avoid placing an I-mode breakpoint such
that control could be transferred from any other part of the
program to the second word of the breakpointed instruction.

^ Preservation of Breakpoints After PRoceed Subcommand:

As in VPSD, IPSD removes the current breakpoint before allowing
execution to continue. However, IPSD removes that breakpoint only
temporarily. It is automatically re-inserted when the next breakpoint
is encountered.

^ The P (Print) Subcommand:

When in I mode, the keys and the general and floating point registers
are displayed in response to the P (print) command. For the general
registers, the two halves are shown as halfword octal numbers, followed
by the fullword octal contents of the register (leading zeros are
suppressed). Two registers are displayed per line, thus:

G R 0 = 0 0 0 G R 1 = 1 7 7 7 7 7 1 7 7 7 7 2 3 7 7 7 7 7 7 7 7 7 2

The floating point registers are each shown as four halfword octal
numbers followed by the decimal value of the register contents. One
register is displayed per line:

FR0= 104121 165605 17270 202 -0.37400000000000E 0001

When in V mode, the registers are displayed as in VPSD, except that the
floating point register is also shown using the format described in the
preceding paragraph.

^ The FR, GR, and HR Subcommands:
These subcommands permit the display and setting of the floating point,
general, and half registers. The following sample dialogues illustrate

S e c o n d E d i t i o n 1 4 - 1 8

PROGRAM EXECUTION AND DEBUGGING

their use. Under l ined entr ies show what you type to speci fy the
register to display and to set register contents; l_ terminates each
subcommand, returning you to the VPSD prompt.

$ FR 1<CR>
F R 1 = 0
F R 0 = 0
F R 1 = 6 2 0 0 0 0
FR0= 104121 165605
$

0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 . 5 < C R >
0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 3 . 7 4 < C R >
0 204 0.12500000000000E 0002 <CR>

17270 202 -0.37400000000000E 0001 /

$ GR 1<CR>
R l
R2
R3
R2
R l
$

0 177772<CR>
0 12<CR>
0 *
12 *
177772 /

$ GR 5<CR>
R5
R6
R7
R6
$

123456 <CR>
0 123456<CR>
0 *
123456 /

$ HR 1<CR>
HI
H2
HI 177777 /
$

0 177777<CR>
0 A

$ P<CR>
K= 10000
G R 0 = 0 0
G R 2 = 0 1 2
G R 4 = 0 0
G R 6 = 0 1 2 3 4 5 6
FR0= 104121 165605 17270
F R 1 = 6 2 0 0 0 0 0

0 GR1= 177777 177772 37777777772
1 2 G R 3 = 0 0 0

0 G R 5 = 0 1 2 3 4 5 6 1 2 3 4 5 6
1 2 3 4 5 6 G R 7 = 0 0 0

202 -0.37400000000000E 0001
204 0.12500000000000E 0002

^ Recognition of Erase and Kill Characters:

IPSD recognizes the Erase and Kill characters, as long as they occur
before a line terminator such as <CR>, ?, /, @, =, !, (,), \, or A.
Note that the question-mark cannot be used as a line terminator when it
has been defined to be the line kill character.

^ Use With CPL or COMINPUT Files:

IPSD can be invoked from within a CPL program or a COMINPUT file

14-19 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

^ Default Arguments for D (Dump):

The D (dump) subcommand in IPSD has default arguments. If the third
argument (number of words per line) is omitted, the dump will show
three locations on one line when in symbolic mode, and eight locations
on a line otherwise. If the second argument (dump-to address) is also
omitted or is zero, '100 locations are dumped. If the first argument
(dump-from address) is also omitted or is zero, dumping starts at the
location last accessed. To start dumping at location '0000000, use a
first argument of zero and a non-zero second argument.

^- Immediate Operands for I-mode Memory Reference Instructions:

In denoting immediate operands in I-mode, it is necessary to use the
left bracket instead of an equal sign. For example,

L 2, [123L

will be interpreted as L 2,=123L.

Immediate operands of MRGR-type instructions must be in octal.
Immediate operands of MRFR-type instructions must be in decimal. The
latter are converted to sixteen-bit values in which the right byte
represents the characteristic. Thus, only seven significant bits of
the mantissa are kept, with the remaining bits truncated. For example:

FL 1, [2.015625

will be interpreted as FL 1,=40202F, although the correct octal
encoding of 2.015625 would have a mantissa of '402 and a characteristic
of '202.

Rest r i c t ions

If IPSD is to be run on a seg runfile, then that runfile cannot use
segments 4000 or 4037. Segment 4000 is reserved for IPSD itself.
Segment 4037 is reserved for IPSD's stack extension.

S e c o n d E d i t i o n 1 4 - 2 0

PROGRAM EXECUTION AND DEBUGGING

IPSDO and IPSD16

IPSDO and IPSD16 are two utilities that offer some assistance in
diagnosing problems in programs that need to reside in or use data in
segment 4000. These utilities are not useful for controlling the
execution of a program, but they can aid in the debugging task by
enabling you to inspect data in segment 4000 without overwriting it.

IPSDO is loaded below 4000/160000 and, therefore, is used to inspect
data above 4000/160000.

IPSD16 is loaded above 4000/160000 and, therefore, is used to inspect
data below 4000/160000.

Usage:

IPSDO

IPSD16

Their subcommand interfaces are the same as IPSD's. Upon invocation,
IPSDO and IPSD16 merely start up and enter an interactive mode. The
initial register settings are as follows:

PB = 4000/0
LB = current LB
SB = current SB
XB = undefined

1 4 - 2 1 S e c o n d E d i t i o n

Appendices

Assembler Error Messages

Table A-1 on the following pages lists the messages that the assembler
can display in response to syntax and other error conditions
encountered during an assembly.

A - 1 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table A-1
Assembler Error Messages

COO: INSTRUCTION IMPROPERLY TERMINATED

FOO: ILLEGAL TERMINATOR ON ARGUMENT # EXPRESSION

FOI: UNRECOGNIZED OPERATOR IN EXPRESSION

F02: FAIL PSEUDO-OP ENCOUNTERED

F03: OPERAND FIELD EMPTY; OPERAND REQUIRED

GOO: GO-TO OR BACK-TO USED OUTSIDE OF MACRO OR ARGUMENT IS NOT
SYMBOL

G01: END/ENDM PSEUDO-OP IS WITHIN GO-TO OR BACK-TO SKIP AREA

100: TAG MODIFIER ILLEGAL ON GENERIC, I/O, OR SHIFT
INSTRUCTION

101: TAG MODIFIED NOT PERMITTED ON 321 MODE FIELD INSTRUCTION

103: CAN'T MAKE THIS INSTRUCTION SHORT (#)

104: ILLEGAL TAG MODIFIED FIELD ON 64V MODE LDX CLASS
INSTRUCTION

105: TAG MODIFIED FIELD NOT PERMITTED ON 64V MODE BRANCH
INSTRUCTION

106: ILLEGAL INDIRECT OR INDEX SPECIFICATION WITH
COMMON/EXTERNAL SYMBOL

107: INDEX SPECIFIED INVALID WITH AP/IP PSEUDO-OP

108: TAG MODIFIED FIELD NOT PERMITTED ON 321 MODE BRANCH
INSTRUCTION

LOO: IMPROPER LABEL (CONSTANT OR TERMINATOR IN LABEL FIELD)

L01: EXTERNAL VARIABLE DISALLOWED IN LITERAL

L02: ILLEGAL ARGUMENT IN EQU, SET, OR XSET

MOO: SYMBOL MULTIPLY DEFINED

N00: 'END' STATEMENT ENCOUNTERED WITHIN MACRO OR IF

S e c o n d E d i t i o n A - 2

ASSEMBLER ERROR MESSAGES

Table A-1 (continued)
Assembler Error Messages

OOO: UNRECOGNIZED OPCODE OR 32I-ONLY OPCODE IN NON-321 MODE

O01: THIS MEMORY REFERENCE INSTRUCTION ONLY PERMITTED IN 64V
MODE

O02: THIS MEMORY REFERENCE INSTRUCTION ONLY PERMITTED IN S/R
MODE

POO: MISMATCHED PARENTHESIS

Q00: AP ONLY PERMITTED IN 64V/32I MODE

Q01: IP ONLY PERMITTED IN 64V/32I MODE

Q02: ENDM PSEUDO-OP DISALLOWED OUTSIDE OF MACRO DEFINITION

R00: ARITHMETIC STACK OVERFLOW: REDUCE THE COMPLEXITY OF THE
EXPRESSION AND TRY AGAIN

R01: MULTIPLY DEFINED MACRO OR MACRO NAME FIELD EMPTY

S00: INSTRUCTION REQUIRES DESECTORIZATION ('LOAD' MODE)

SOI: INDIRECT DAC DISALLOWED IN C64R MODE

S02: 64V INSTRUCTION DISALLOWED IN C64R MODE

TOO: SYNTAX ERROR IN 321 MODE TAG MODIFIED FIELD

U00: UNDEFINED SYMBOL IN ADDRESS FIELD OR EXPRESSION

U01: UNDEFINED SYMBOL IN 'ORG' OR 'SETB'

V01: CONTENTS OF BIT FIELD OUT OF RANGE

V02: UNRECOGNIZED OPERATOR IN EXPRESSION

V03: FUNCTION CODE OR DEVICE ADDRESS OUT OF RANGE IN I/O
INSTRUCTION

V04: SHIFT COUNT OUT OF RANGE IN SHIFT INSTRUCTION

V05: NO COMMA FOLLOWS FAR SPECIFICATION IN FIELD ADDRESS
INSTRUCTION

A - 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table A-1 (continued)
Assembler Error Messages

V06: NO COMMA FOLLOWS REGISTER # IN 321 MODE REGISTER GENERIC

V07: NO COMMA FOLLOWS REGISTER # IN 321 MODE FLOATING PT
REGISTER GENERIC

V08: NO COMMA FOLLOWS REGISTER # IN 321 MODE BIT TEST
INSTRUCTION

V09: NO COMMA FOLLOWS BIT # IN 321 MODE BIT TEST INSTRUCTION

V10: BAD DELIMITER IN 321 MODE GENERAL REGISTER MEMORY
REFERENCE INSTRUCTION

Vll: BAD DELIMITER IN 321 MODE SHIFT INSTRUCTION

V12: BAD SHIFT COUNT IN 321 MODE SHIFT INSTRUCTION

V13: ILLEGAL TAG MODIFIED FIELD FOR 321 MODE SHIFT INSTRUCTION

V14: BAD DELIMITER FOLLOWS REGISTER # IN 321 MODE PIO
INSTRUCTION

V15: LABEL REQUIRED ON DFTB/DFVT PSEUDO-OP

V16: OPEN PARENTHESIS MISSING ON DFTB/DFVT ARGUMENT

V17: CLOSE PARENTHESIS MISSING ON DFTB/DFVT ARGUMENT

V18: LABEL REQUIRED ON IFTF, IFTT, IFVT, IFVF PSEUDO-OP

V19: SYMBOL NOT FOUND IN IFTF, IFTT, IFVT, IFVF PSEUDO-OP

V20: ABS/REL PSEUDO-OP ILLEGAL IN SEG/SEGR MODE

V21: SEG/SEGR PSEUDO-OP SPECIFIED AFTER CODE HAS BEEN
GENERATED

V22: PROC/LINK SPECIFICATION ONLY ALLOWED IN SEG/SEGR MODE

V23: FIELD OUT OF RANGE IN DDM PSEUDO-OP

V24: ILLEGAL ARGUMENT FOLLOWS 'EXT' PSEUDO-OP

V25: 'END' PSEUDO-OP ENCOUNTERED WITHIN MACRO

^ >

Second Edition A-4

ASSEMBLER ERROR MESSAGES

Table A-1 (continued)
Assembler Error Messages

V26: SYNTAX ERROR IN DYMN PSEUDO-OP ARGUMENT(S)

V27: ILLEGAL ARGUMENT FOLLOWS SUBR/ENT PSEUDO-OP

V28: 16 BITS NOT DEFINED BY VFD PSEUDO-OP (UNDEFINED BITS SET
TO 0)

V29: OPERAND MISSING OR UNRECOGNIZED OPERATOR IN EXPRESSION

V30: UNTERMINATED CHARACTER STRING

V31: VALUE OVERFLOW IN FLOATING POINT NORMALIZE

V32: VALUE OVERFLOW IN FLOATING POINT (RE-)NORMALIZE

V33: SIGNIFICANCE LOST IN SCALED BINARY DATUM

V34: FLOATING POINT VALUE OUT OF RANGE

V35: 'BCI' PSEUDO-OP REPEAT COUNT ERROR

V36: ILLEGAL SYMBOL TYPE IN 'BCI' REPEAT COUNT SPECIFICATION

V37: 'CALL' PSEUDO-OP FOLLOWED BY CONSTANT OR TERMINATOR

V38: BAD ADDRESS FIELD FOLLOWING 'COMN' PSEUDO-OP

V39: ILLEGAL REPEAT COUNT IN DATA DEFINITION PSEUDO-OP

V40: ILLEGAL ARGUMENT FOLLOWS DEC/OCT PSEUDO-OP

V41: RLIT SPECIFIED AFTER CODE HAS BEEN GENERATED

V42: WCS ENTRANCE OUT OF RANGE - MUST BE 0-63

V43: SYML NOT PERMITTED AFTER CODE HAS BEEN GENERATED

V44: SYML ONLY PERMITTED IN SEG/SEGR MODE

V45: IMPROPER ARGUMENT TO SEG OR SEGR PSEUDO-OP

V4 6: INVALID ESCAPE CODE IN CHARACTER STRING

V47: CHARACTER STRING TOO LONG

V48: WARNING: NUMERIC CONSTANT CHARACTER NOT AFFECTED BY
ASCII-8 SWITCH

A-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table A-1 (continued)
Assembler Error Messages

X00: 321 MODE REGISTER SPECIFICATION ERROR

Y00: PHASE ERROR - THE VALUE OF THE SYMBOL DEFINED ABOVE
DIFFERS BETWEEN PASS 1 AND PASS 2

ZOO: ILLEGAL ABSOLUTE REFERENCE IN SEG/SEGR MODE

Z01: ABSOLUTE REFERENCE OUTSIDE OF 0-7 DISALLOWED IN SEG/SEGR
MODE

Z02: ABSOLUTE REFERENCE IN AP/IP DISALLOWED

Z03: ONLY 1 EXTERNAL NAME IS ALLOWED WITHIN AN EXPRESSION

Z04: THE MODE ASSOCIATED WITH THE RESULT OF THE EXPRESSION IS
ILLEGAL WITH THE SPECIFIED INSTRUCTION

Z05: THE RESULTANT MODE OF THIS EXPRESSION IS ILLEGAL WHEN
USED WITH THE SPECIFIED OPCODE OR PSEUDO-OP

Z06: MORE THAN 1 OPERAND IS NON ABS/REL OR THE RIGHT-HAND
OPERAND IS NON ABS/REL

Z07: AN EXTERNAL NAME IS NOT PERMITTED

Z08: NON-16-BIT INTEGER IS ILLEGAL IN AN EXPRESSION

S e c o n d E d i t i o n A - 6

Instruction Summary Chart

This appendix consists of a summary chart of the V mode and I mode
instruction sets. Each instruction's mnemonic operation code is
followed by its octal code, format, functional group, addressing mode,
CBIT, LINK, and condition code information, and a phrase describing its
func t ion .

The columns in each chart are as follows:

R Res t r i c t ions :

Mnem

Opcode

RI

Blank Instruction can be executed in any ring.
R Instruction causes a restricted mode fault i f

executed in other than Ring 0.
P Instruction may cause a fault depending on

the effective address value.

A mnemonic name recognized by the assembler.

Octal operation code portion of the instruction.

Register (R) and Immediate (I) forms, if available.

B - l Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Form Format of instruction

Mnemonic D e fi n i t i o n

AP Address Pointer
BRAN Branch
CHAR Character
DECI Decimal
GEN Generic
GR General Register
IBRN I Mode Branch
MR Memory Reference
MRFR Memory Reference
MRGR Memory Reference
MRNR Memory Reference
PIO Programmed I/O
RGEN Register Generic
SHFT S h i f t

— non Memory Reference

— Non I Mode
— Floating Register
— General Register
— Non Register

Func Function of instruction:

Mnemonic D e fi n i t i o n

ADMOD Addressing Mode
BRAN Branch
CHAR Character
CLEAR Clear Field
CPTR C Language Pointer
DECI Decimal Arithmetic
FIELD Field Register
FLPT Floating Point Arithmetic
GRR General Register Relative
INT Integer
INTGY I n t e g r i t y
10 Input/Output
KEYS Keys
LOGIC Logical Operations
LTSTS Logical Test and Set
MCTL Machine Control
MOVE Move
PCTLJ Program Control and Jump
PRCEX Process Exchange
QUEUE Queue Control
SHIFT Register Shift
SKIP Skip

Second Edition B-2

INSTRUCTION SUMMARY CHART

Mode Addressing modes of instructions

M o d e N a m e

V 64V
I 321
V I 64V or 321
IX 32IX

CL How instruction affects the CBIT and LINK,

C o d e D e fi n i t i o n

CBIT and LINK are unchanged
1 CBIT = unchanged; LINK = carry
2 CBIT = overflow status; LINK = carry
3 CBIT = overflow status; LINK = indeterminate
4 CBIT and LINK = shift extension
5 CBIT = result; LINK = indeterminate
6 CBIT and LINK are indeterminate
7 CBIT and LINK are loaded by the instruction
8 CBIT = result; LINK = unchanged
9 CBIT = unchanged; LINK = indeterminate
* CBIT and LINK values vary among processors;

see individual instruction description

CC How instruction affects the condition codes.

C o d e D e fi n i t i o n

Condition codes are unchanged.
1 Condition codes are set to reflect the result

of arithmetic operation or compare.
4 Condition codes are set to reflect result of

branch, compare, or logicize operand state.
5 Cond i t ion codes are inde termina te .
6 Condition codes are loaded by instruction.
7 Condition codes show special results for this

i n s t r u c t i o n .

Description A brief description of the instruction. For I-mode
register operations, an R designates a full (32-bit)
register; an r designates a half (16-bit) register.

B - 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table B-l
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

A1A 141206 GEN INT Add One to A
A2A 140304 GEN INT Add Two to A
A 0 2 R I M R G R INT Add Fullword
ABQ 141716 AP QUEUE Add Entry to Bottom

of Queue
ABQ 134 AP QUEUE Add Entry to Bottom

of Queue
ACA 141216 GEN INT Add CBIT to A
ACP 5 5 R I G R CPTR IX Add C Pointer
ADD 06 MR INT Add
ADL 06 03 MR INT Add Long
ADLL 141000 GEN INT Add LINK to L
ADLR 014 RGEN INT Add LINK to R
AH 1 2 R I M R G R INT Add Halfword
AIP 75 MRGR GRR IX Add Indirect Pointer
ALFA 0 001301 GEN FIELD Add L to FAR 0
ALFA 1 001311 GEN FIELD Add L to FAR 1
ALL 0414XX SHFT SHIFT A Left Logical
ALR 0416XX SHFT SHIFT A Left Rotate
ALS 0415XX SHFT SHIFT A Arithmetic Left Shift
ANA 03 MR LOGIC AND to A
ANL 03 03 MR LOGIC AND to A Long
ARFA 0 161 RGEN FIELD -- Add R to FAR 0
ARFA 1 171 RGEN FIELD Add R to FAR 1
ARGT 000605 GEN PCTLJ V I Argument Transfer
ARL 0404XX SHFT SHIFT A Right Logical
ARR 0406XX SHFT SHIFT A Right Rotate
ARS 0405XX SHFT SHIFT A Arithmetic Right Shift
ATQ 141717 AP QUEUE Add Entry to Top

of Queue
ATQ 135 AP QUEUE Add Entry to Top

of Queue
BCEQ 141602 BRAN BRAN VI Branch on Condition

Code EQ
BCGE 141605 BRAN BRAN V I Branch on Condition

Code GE
BCGT 141601 BRAN BRAN VI Branch on Condition

Code GT
BCLE 141600 BRAN BRAN VI Branch on Condition

Code LE
BCLT 141604 BRAN BRAN V I Branch on Condition

Code LT
BCNE 141603 BRAN BRAN V I Branch on Condition

Code NE
BCR 141705 BRAN BRAN V I Branch on CBIT Reset

to 0

Second Edition B-4

INSTRUCTION SUMMARY CHART

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

BCS 141704 BRAN BRAN V I . . Branch on CBIT Set to 1
BDX 140734 BRAN BRAN - - Branch on Decremented X
BDY 140724 BRAN BRAN - - Branch on Decremented Y
BEQ 140612 BRAN BRAN - 4 Branch on A Equal to 0
BFEQ 141612 BRAN BRAN - 4 Branch on F Equal to 0
BFEQ 122 IBRN BRAN - 4 Branch on F Equal to 0
BFGE 141615 BRAN BRAN - 4 Branch on F Greater Than

or Equal to 0
BFGE 125 IBRN BRAN - 4 Branch on F Greater Than

or Equal to 0
BFGT 141611 BRAN BRAN - 4 Branch on F Greater

Than 0
BFGT 121 IBRN BRAN - 4 Branch on F Greater

Than 0
BFLE 141610 BRAN BRAN - 4 Branch on F Less Than

or Equal to 0
BFLE 120 IBRN BRAN - 4 Branch on F Less Than

or Equal to 0
BFLT 141614 BRAN BRAN - 4 Branch on F Less

Than 0
BFLT 124 IBRN BRAN - 4 Branch on F Less

Than 0
BFNE 141613 BRAN BRAN - 4 Branch on F Not Equal

to 0
BFNE 123 IBRN BRAN - 4 Branch on F Not Equal

to 0
BGE 140615 BRAN BRAN - 4 Branch on A Greater Than

or Equal to 0
BGT 140611 BRAN BRAN - 4 Branch on A Greater

Than 0
BHD1 144 IBRN BRAN — — Branch on r Decremented

by 1
BHD2 145 IBRN BRAN — — Branch on r Decremented

by 2
BHD4 146 IBRA BRAN ~ ~ Branch on r Decremented

by 4
BHEQ 112 IBRN BRAN - 4 Branch on r Equal to 0
BHGE 115 IBRN BRAN - 4 Branch on r Greater Than

or Equal to 0
BHGT 111 IBRN BRAN - 4 Branch on r Greater

Than 0
BHI1 140 IBRN BRAN — — Branch on r Incremented

by 1
BHI2 141 IBRN BRAN Branch on r Incremented

by 2

B-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

BHI4 142 IBRN BRAN - - Branch on r Incremented
by 4

BHLE 110 IBRN BRAN - 4 Branch on r Less Than
or Equal to 0

BHLT 114 IBRN BRAN - 4 Branch on r Less Than 0
BHNE 113 IBRN BRAN - 4 Branch on r Not Equal

to 0
BIX 141334 BRAN BRAN - - Branch on Incremented X
BIY 141324 BRAN BRAN - - Branch on Incremented Y
BLE 140610 BRAN BRAN - 4 Branch on A Less Than

or Equal to 0
BLEQ 140702 BRAN BRAN - 4 Branch on L Equal to 0
BLGE 140615 BRAN BRAN - 4 Branch on L Greater Than

or Equal to 0
BLGT 140701 BRAN BRAN - 4 Branch on L Greater

Than 0
BLLE 140700 BRAN BRAN - 4 Branch on L Less Than

or Equal to 0
BLLT 140614 BRAN BRAN - 4 Branch on L Less Than 0
BLNE 140703 BRAN BRAN - 4 Branch on L Not Equal

to 0
BLR 141707 BRAN BRAN V I — — Branch on LINK Reset

to 0
BLS 141706 BRAN BRAN V I - - Branch on LINK Set to 1
BLT 140614 BRAN BRAN - 4 Branch on A Less Than 0
BMEQ 141602 BRAN BRAN V I — — Branch on Magnitude

Condition EQ
BMGE 141706 BRAN BRAN V I — — Branch on Magnitude

Condition GE
BMGT 141710 BRAN BRAN VI — — Branch on Magnitude

Condition GT
BMLE 141711 BRAN BRAN V I — — Branch on Magnitude

Condition LE
BMLT 141707 BRAN BRAN VI — — Branch on Magnitude

Condition LT
BMNE 141603 BRAN BRAN V I — — Branch on Magnitude

Condition NE
BNE 140613 BRAN BRAN - 4 Branch on A Not Equal

to 0
BRBR 040-07 IBRN BRAN — — Branch on Register Bit

Reset to 0
BRBS 000-03 IBRN BRAN — — Branch on Register Bit

Set to 1
BRD1 134 IBRN BRAN Branch on R Decremented

by 1

Second Edition B-6

INSTRUCTION SUMMARY CHART

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

BRD2 135 IBRN BRAN Branch on R Decremented
by 1

BRD4 136 IBRN BRAN Branch on R Decremented
by 4

BREQ 102 IBRN BRAN Branch on R Equal to 0
BRGE 105 IBRN BRAN Branch on R Greater Than

or Equal to 0
BRGT 101 IBRN BRAN Branch on R Greater

Than 0
BRI l 130 IBRN BRAN Branch on R Incremented

by 1
BRI2 131 IBRN BRAN Branch on R Incremented

by 2
BRI4 132 IBRN BRAN Branch on R Incremented

by 4
BRLE 100 IBRN BRAN Branch on R Less Than

or Equal to 0
BRLT 104 IBRN BRAN Branch on R Less Than 0
BRNE 103 IBRN BRAN Branch on R Not Equal

to 0
C 6 1 R I M R G R INT Compare Fullword
CAL 141050 GEN CLEAR Clear A Left Byte
CALF 000705 AP PCTLJ V I Call Fault Handler
CAR 141044 GEN CLEAR Clear A Right Byte
CAS 11 MR SKIP Compare A and Skip
CAZ 140214 GEN SKIP Compare A with 0
CCP 4 5 R GR CPTR I X Compare C Pointer
CGT 001314 GEN BRAN Computed GOTO
CGT 026 RGEN BRAN Computed GOTO
CH 7 1 R I M R G R INT Compare Halfword
CHS 140024 GEN INT Change Sign
CHS 040 RGEN INT Change Sign
CLS 11 03 MR LOGIC Compare L and Skip
CMA 140401 GEN LOGIC Complement A
CMH 045 RGEN LOGIC Complement r
CMR 44 RGEN LOGIC Complement R
CR 056 RGEN CLEAR Clear R to 0
CRA 140040 GEN CLEAR Clear A to 0
CRB 140015 GEN CLEAR Clear B to 0
CRBL 062 RGEN CLEAR Clear R High Byte 1

(Bits 1-8)
CRBR 063 RGEN CLEAR ~* Clear R High Byte 2

(Bits 9-16)
CRE 141404 GEN CLEAR Clear E to 0
CRHL 054 RGEN CLEAR Clear R Left Halfword

B-7 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

CRHR 055 RGEN CLEAR __ Clear R Right Halfword
CRL 140010 GEN CLEAR Clear L to 0
CRLE 141410 GEN CLEAR Clear L and E to 0
CSA 140320 GEN MOVE Copy Sign of A
CSR 041 RGEN MOVE Copy Sign of R
D 62 RI MRGR INT Divide Ful lword
DBLE 106 RGEN FLPT Convert Single to Double

Prec is ion F loa t ing
DCP 160 RGEN CPTR IX Decrement C Pointer
DFA 15,17 RI MRFR FLPT Double Precision

Floating Add
DFAD 06 02 MR FLPT Double Precision

Floating Add
DFC 05,07 RI MRFR FLPT Double Precision

Floating Compare
DFCM 140574 GEN FLPT Double Precision

Floating Complement
DFCM 144 RGEN FLPT Double Precision

Floating Complement
DFCS 11 02 MR FLPT Double Precision

Floating Compare
and Skip

DFD 31,33 RI MRFR FLPT Double Precision
Float ing Div ide

DFDV 17 02 MR FLPT Double Precision
Float ing Div ide

DFL 01,03 RI MRFR FLPT Double Precision
Floating Load

DFLD 02 02 MR FLPT Double Precision
Floating Load

DFLX 15 02 MR FLPT Double Precision
Floating Load Index

DFM 25,27 RI MRFR FLPT Double Precision
F l o a t i n g M u l t i p l y

DFMP 16 02 MR FLPT Double Precision
F l o a t i n g M u l t i p l y

DFS 21,23 RI MRFR FLPT Double Precision
Float ing Subtract

DFSB 07 02 MR FLPT Double Precision
Float ing Subtract

DFST 04 02 MR FLPT Double Precision
Float ing Store

DFST 11,13 MRFR FLPT Double Precision
Float ing Store

DH 72 R I MRGR INT Divide Halfword

Second Edition B-8

INSTRUCTION SUMMARY CHART

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

DH1 130 RGEN INT Decrement r by 1
DH2 131 RGEN INT Decrement r by 2
DIV 17 MR INT D i v i d e
DM 60 MRNR INT Decrement Memory

F u l l w o r d
DMH 70 MRNR INT Decrement Memory

Hal fword
DR1 124 RGEN INT Decrement R by 1
DR2 125 RGEN INT Decrement R by 2
DRN 040300 GEN FLPT V I Double Round From Quad
DRNM 140571 GEN FLPT V I Double Round From Quad

Towards Nega t i ve
I n fi n i t y

DRNP 040301 GEN FLPT V I Double Round From Quad
Towards P o s i t i v e
I n fi n i t y

DRNZ 040302 GEN FLPT V I Double Round From Quad
Towards Zero

DRX 140210 GEN SKIP Decrement and Replace X
DVL 17 03 MR INT Divide Long
E16S 000011 GEN ADMOD V I Enter 16S Mode
E32I 001010 GEN ADMOD V I Enter 321 Mode
E32R 001013 GEN ADMOD V I Enter 32R Mode
E32S 000013 GEN ADMOD V I Enter 32S Mode
E64R 001011 GEN ADMOD V I Enter 64R Mode
E64V 000010 GEN ADMOD V I Enter 64V Mode
EAFA 0 001300 AP FIELD V I E f f e c t i v e

FAR 0
Address t o

EAFA 1 001310 AP FIELD V I E f f e c t i v e
FAR 1

Address t o

EAL 01 01 MR PCTLJ E f f e c t i v e Address to L
EALB 13 02 MR PCTLJ E f f e c t i v e Address to LB
EALB 42 MRNR PCTLJ E f f e c t i v e Address to LB
EAR 63 MRGR PCTLJ E f f e c t i v e Address to R
EAXB 12 02 MR PCTLJ E f f e c t i v e Address to XB
EAXB 52 MRNR PCTLJ E f f e c t i v e Address to XB

R EIO 14 01 MR IO Execute I/O
R EIO 34 MRGR IO Execute I/O
R ENB 000401 GEN IO V I Enable Interrupts
R ENBL 000401 GEN IO V I Enable In ter rupts

(Loca l)
R ENBM 000400 GEN IO V I Enable Interrupts

(Mutual)
R ENBP 000402 GEN IO V I Enable Interrupts

(Process)

B-9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

ERA 05 MR LOGIC Exclusive OR to A
ERL 05 03 MR LOGIC Exclusive OR to L
FA 014,16 RI MRFR FLPT Floating Add
FAD 06 01 MR FLPT Floating Add
FC 04,06 RI MRFR FLPT Floating Compare
FCDQ 140571 GEN FLPT V I Floating Convert Double

to Quad
FCM 140530 GEN FLPT Floating Complement
FCM 100 RGEN FLPT Floating Complement
FCS 11 01 MR FLPT Floating Compare and

Skip
FD 30,32 RI MRFR FLPT Float ing Div ide
FDBL 140016 GEN FLPT Floating Convert Single

to Double
FDV 17 01 MR FLPT Float ing Div ide
FL 00,02 RI MRFR FLPT Floating Load
FLD 02 01 MR FLPT Floating Load
FLT 105,11 RGEN FLPT Convert Integer to

Float ing Point
FLTA 140532 GEN FLPT Convert Integer to

Float ing Point
FLTH 102,11 RGEN FLPT Convert Halfword Integer

to Floating Point
FLTL 140535 GEN FLPT Convert Long Integer to

Float ing Point
FLX 15 01 MR FLPT Floating Load Index
FM 24,26 RI MRFR FLPT F l o a t i n g M u l t i p l y
FMP 16 01 MR FLPT F l o a t i n g M u l t i p l y
FRN 140534 GEN FLPT Floating Round
FRN 107 RGEN FLPT Floating Round
FRNM 040320 GEN FLPT Floating Round Towards

N e g a t i v e I n fi n i t y
FRNM 146 RGEN FLPT Floating Round Towards

N e g a t i v e I n fi n i t y
FRNP 040303 GEN FLPT Floating Round Towards

P o s i t i v e I n fi n i t y
FRNP 145 RGEN FLPT Floating Round Towards

P o s i t i v e I n fi n i t y
FRNZ 040321 GEN FLPT Floating Round Towards

Zero
FRNZ 147 RGEN FLPT Floating Round Towards

Zero
FS 20,22 RI MRFR FLPT Float ing Subtract
FSB 07 01 MR FLPT Float ing Subtract

Second Edition B-10

INSTRUCTION SUMMARY CHART

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

FSGT 140515 GEN FLPT Floating Skip If Greater
Than 0

FSLE 140514 GEN FLPT Floating Skip If Less
Than or Equal to 0

FSMI 140512 GEN FLPT Floating Skip If Minus
FSNZ 140511 GEN FLPT Floating Skip If Not

Equal to 0
FSPL 140513 GEN FLPT Floating Skip If Plus
FST 04 01 MR FLPT Float ing Store
FST 10,12 MRFR FLPT Floating Store
FSZE 140510 GEN FLPT Floating Skip If Equal

to 0
R HLT 000000 GEN MCTL V I H a l t

I 4 1 R MRGR MOVE Interchange R and Memory
F u l l w o r d

IAB 000201 GEN MOVE Interchange A and B
ICA 141340 GEN MOVE Interchange Bytes of A
ICBL 065 RGEN MOVE Interchange Bytes and

Clear Left
ICBR 066 RGEN MOVE Interchange Bytes and

Clear Right
ICHL 060 RGEN MOVE Interchange Halfwords

and Clear Left
ICHR 061 RGEN MOVE Interchange Halfwords

and Clear Right
ICL 141140 GEN MOVE Interchange Bytes and

Clear Left
ICP 167 RGEN CPTR I X Increment C Pointer
ICR 141240 GEN MOVE Interchange Bytes and

Clear Right
IH 5 1 R MRGR MOVE Interchange r and and

Memory Halfword
IH1 126 RGEN INT Increment r by 1
IH2 127 RGEN INT Increment r by 2
ILE 141414 GEN MOVE Interchange L and E
IM 40 MRNR INT Increment Memory

F u l l w o r d
IMA 13 MR MOVE Interchange Memory and A
IMH 50 MRNR INT Increment Memory

Ha l fwo rd
R INBC 001217 AP PRCEX V I I n t e r r u p t N o t i f y

Beginning, Clear
Ac t i ve I n t e r r up t

R INBN 001215 AP PRCEX V I I n t e r r u p t N o t i f y
Beg inn ing

B - l l Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

R INEC 001216 AP PRCEX VI Interrupt Notify End,
Clear Act ive Interrupt

R INEN 001214 AP PRCEX VI Interrupt Notify End
R INH 001001 GEN IO VI I n h i b i t I n t e r r u p t s
R INHL 001001 GEN IO V I I n h i b i t I n t e r r u p t s

(Loca l)
R INHM 001000 GEN IO V I I n h i b i t I n t e r r u p t s

(Mutual)
R INHP 001002 GEN IO V I I n h i b i t I n t e r r u p t s

(Process)
INK 070 RGEN KEYS Input Keys
INT 103,11 RGEN FLPT Convert Floating Point

to Integer
INTA 140531 GEN FLPT Convert Floating Point

to Integer
INTH 101,11 RGEN FLPT Convert Floating Point

to Halfword Integer
INTL 140533 GEN FLPT Convert Floating Point

to Integer Long
IR1 122 RGEN INT Increment R by 1
IR2 123 RGEN INT Increment R by 2
IRB 064 RGEN MOVE Interchange r Bytes
IRH 057 RGEN MOVE Interchange R Halves
IRS 12 MR SKIP Increment and Replace

Memory
R IRTC 000603 GEN IO V I Interrupt Return, Clear

Ac t i ve I n t e r r up t
R IRTN 000601 GEN IO V I In ter rup t Return

IRX 140114 GEN SKIP Increment and Replace X
R ITLB 000615 GEN MCTL V I Invalidate STLB Entry

JMP 01 MR PCTLJ Jump
JMP 51 MRNR PCTLJ Jump
JSR 73 MRGR PCTLJ Jump to Subroutine
JST 10 MR PCTLJ Jump and Store
JSX 35 03 MR PCTLJ Jump and Save in X
JSXB 14 02 MR PCTLJ Jump and Save in XB
JSXB 61 MRNR PCTLJ Jump and Save in XB
JSY 14 MR PCTLJ Jump and Save in Y
L 0 1 R I M R G R MOVE Load
LCC 45 MRGR CPTR I X Load C Character
LCEQ 141503 GEN LTSTS Load A on Condition

Code EQ
LCEQ 153 RGEN LTSTS Load r on Condition

Code EQ

Second Edition B-12

INSTRUCTION SUMMARY CHART

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

LCGE 141504 GEN LTSTS - - Load A
Code

on
GE

C o n d i t i o n

LCGE 154 RGEN LTSTS — — Load r
Code

on
GE

C o n d i t i o n

LCGT 141505 GEN LTSTS - — Load A
Code

on
GT

C o n d i t i o n

LCGT 155 RGEN LTSTS — — Load r
Code

on
GT

C o n d i t i o n

LCLE 141501 GEN LTSTS — — Load A
Code

on
LE

C o n d i t i o n

LCLE 151 RGEN LTSTS — — Load r
Code

on
LE

C o n d i t i o n

LCLT 141500 GEN LTSTS — — Load A
Code

on
LT

C o n d i t i o n

LCLT 150 RGEN LTSTS — — Load r
Code

on
LT

C o n d i t i o n

LCNE 141502 GEN LTSTS - — Load A
Code

on
NE

C o n d i t i o n

LCNE 152 RGEN LTSTS — — Load r
Code

on
NE

C o n d i t i o n

LDA 02 MR MOVE - - Load A
P LDAR 44 MRGR MOVE - 5 Load from Addressed

R e g i s t e r
LDC 0 001302 CHAR CHAR - 7 Load Character
LDC 0 162 RGEN CHAR - 7 Load Character
LDC 1 001312 CHAR CHAR - 7 Load Character
LDC 1 172 RGEN CHAR - 7 Load Character
LDL 02 03 MR MOVE - - Load Long

P LDLR 05 01 MR MOVE - 5 Load from Addressed
R e g i s t e r

LDX 35 00 MR MOVE - - Load X
LDY 35 01 MR MOVE - - Load Y
LEQ 140413 GEN LTSTS - 4 Load A on A Equal to 0
LEQ 003 RGEN LTSTS - 4 Load r on R Equal to 0
LF 140416 GEN LTSTS - 5 Load False
LF 016 RGEN LTSTS - 5 Load False
LFEQ 141113 GEN LTSTS - 4 Load A on F Equal to 0
LFEQ 023,03 RGEN LTSTS - 4 Load r on F Equal to 0
LFGE 141114 GEN LTSTS - 4 Load A on F Greater Than

or Equal to 0
LFGE 024,03 RGEN LTSTS - 4 Load r on F Greater Than

or Equal to 0
LFGT 141115 GEN LTSTS - 4 Load A

Than
on
0

F Greater

B-13 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

LFGT 025,03 RGEN LTSTS - 4 Load r on F Greater
Than 0

LFLE 141111 GEN LTSTS - 4 Load
o r

A on F Less Than
Equal to 0

LFLE 021,03 RGEN LTSTS - 4 Load
o r

r on F Less Than
Equal to 0

LFLI 0 001303 BRAN FIELD V I - - Load FLR 0 Immediate
LFLI 1 001313 BRAN FIELD V I - - Load FLR 1 Immediate
LFLT 141110 GEN LTSTS - 4 Load A on F Less Than 0
LFLT 020,03 RGEN LTSTS - 4 Load r on F Less Than 0
LFNE 141112 GEN LTSTS - 4 Load

o r
A on F Not Equal
Equal to 0

LFLI 0 001303 BRAN FIELD V I - - Load FLR 0 Immediate
LFLI 1 001313 BRAN FIELD V I - - Load FLR 1 Immediate
LFLT 141110 GEN LTSTS - 4 Load A on F Less Than 0
LFLT 020,03 RGEN LTSTS - 4 Load r on F Less Than 0
LFNE 141112 GEN LTSTS - 4 Load

o r
A on F Not Equal
Equal to 0

LFNE 022,03 RGEN LTSTS - 4 Load
t o

r on F Not Equal
0

LGE 140414 GEN LTSTS - 4 Load
o r

A on A Greater Than
Equal to 0

LGE 004 RGEN LTSTS - 4 Load
o r

r on R Greater Than
Equal to 0

LGT 140415 GEN LTSTS - 4 Load A on A Greater
Than 0

LGT 005 RGEN LTSTS - 4 Load r on R Greater
Than 0

LH 11 RI MRGR MOVE - - Load Ha l fwo rd
LHEQ 013 RGEN LTSTS - 4 Load r on r Equal to 0
LHGE 004 RGEN LTSTS - 4 Load

o r
r on r Greater Than
Equal to 0

LHGT 015 RGEN LTSTS - 4 Load r on r Greater
Than 0

LHLl 04 MRGR MOVE - - Load Hal fword Shi f ted
Left by 1

LHL2 14 MRGR MOVE - - Load Hal fword Shi f ted
Left by 2

LHL3 35 MRGR MOVE - - Load Hal fword Shi f ted
Left by 3

LHLE 011 RGEN LTSTS - 4 Load
o r

r on r Less Than
Equal to 0

LHLT 000 RGEN LTSTS - 4 Load r on r Less Than 0
LHNE 012 RGEN LTSTS - 4 Load

t o
r on r Not Equal
0

Second Edition B-14

INSTRUCTION SUMMARY CHART

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

R LIOT 000044 AP MCTL V I Load IOTLB
LIP 65 MRGR GRR IX Load Ind i r ec t Po in te r
LLE 140411 GEN LTSTS Load A on A Less Than or

Equal to 0
LLE 001 RGEN LTSTS Load r on R Less Than or

Equal to 0
LLEQ 141513 GEN LTSTS Load L on A Equal to 0
LLGE 140414 GEN LTSTS Load

o r
L on A Greater Than
Equal to 0

LLGT 141515 GEN LTSTS Load L on A Greater
Than 0

LLL 0410XX SHFT SHIFT Long Lef t Logica l
LLLE 141511 GEN LTSTS Load

o r
L on A Less Than
Equal to 0

LLLT 140410 GEN LTSTS Load L on A Less Than 0
LLNE 141512 GEN LTSTS Load

t o
L on A Not Equal
0

LLR 0412XX SHFT SHIFT Long Left Rotate
LLS 0411XX SHFT SHIFT Long Le f t Sh i f t
LLT 140410 GEN LTSTS Load A on A Less Than 0
LLT 000 RGEN LTSTS Load r on R Less Than 0
LNE 140412 GEN LTSTS Load

t o
A on A Not Equal
0

LNE 002 RGEN LTSTS Load
t o

r on R Not Equal
0

R LPID 000617 GEN MCTL V I Load Process ID
R LPSW 000711 AP MCTL V I Load Process Status Word

LRL 0400XX SHFT SHIFT Long Right Logical
LRR 0402XX SHFT SHIFT Long Right Rotate
LRS 0401XX SHFT SHIFT Long Right Shi f t
LT 140417 GEN LTSTS Load True
LT 017 RGEN LTSTS Load True
M 42 RI MRGR INT Mu l t i p l y Fu l lwo rd
MH 52 RI MRGR INT Mu l t i p l y Ha l fword
MPL 16 03 MR INT Mult iply Long
MPY 16 MR INT M u l t i p l y
N 03 RI MRGR LOGIC AND Fullword

R NFYB 001211 AP PRCEX V I N o t i f y
R NFYE 001210 AP PRCEX V I N o t i f y

NH 13 RI MRGR LOGIC AND Halfword
NOP 000001 GEN MCTL V I No Operation
0 23 RI MRGR LOGIC OR Fullword
OH 33 RI MRGR LOGIC OR Halfword
ORA 03 02 MR LOGIC Inclusive OR
OTK 071 RGEN KEYS Output Keys

B-15 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

PCL 10 02 MR PCTLJ Procedure Call
PCL 41 MRNR PCTLJ Procedure Call
PID 052 RGEN INT Posit ion for Integer

D i v i d e
PIDA 000115 GEN INT Posi t ion for Integer

D i v i d e
PIDH 053 RGEN INT Position r for

Integer Divide
PIDL 000305 GEN INT Posi t ion for Integer

Divide Long
PIM 050 RGEN INT Pos i t i on a f t e r M u l t i p l y
PIMA 000015 GEN INT Pos i t i on a f t e r M u l t i p l y
PIMH 051 RGEN INT Posit ion r after

M u l t i p l y
PIML 000301 GEN INT Pos i t i on a f t e r

Long
M u l t i p l y

PRTN 000611 GEN PCTLJ V I Procedure Retu]rn
R PTLB 000064 GEN MCTL V I Purge TLB

QFAD 5 2 2 MR FLPT Quad Precision
Add

F l o a t i n g

QFAD 36 MRFR FLPT Quad Precision
Add

F l o a t i n g

QFC 4 7 R I M R F R FLPT Quad Precision F l o a t i n g
Compare

QFCM 140570 GEN FLPT Quad Precision
Complement

F l o a t i n g

QFCM 140570 GEN FLPT Quad Precision
Complement

F l o a t i n g

QFCS 5 2 6 MR FLPT Quad Precision F l o a t i n g
Compare and Skip

QFDV 5 2 5 MR FLPT Quad Precision
D i v i d e

F l o a t i n g

QFDV 46 MRFR FLPT Quad Precision
D i v i d e

F l o a t i n g

QFLD 5 2 0 MR FLPT Quad Precision
Load

F l o a t i n g

QFLD 34 MRFR FLPT Quad Precision
Load

F l o a t i n g

QFLX 6 7 MR FLPT Quad Precision
Load Index

F l o a t i n g

QFMP 5 2 4 MR FLPT Quad Precision
M u l t i p l y

F l o a t i n g

QFMP 45 MRFR FLPT Quad Precision
M u l t i p l y

F l o a t i n g

Second Edition B-16

INSTRUCTION SUMMARY CHART

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

QFSB 5 2 3 MR FLPT Quad Precision Floating
Sub t rac t

QFSB 37 MRFR FLPT Quad Precision Floating
Sub t rac t

QFST 5 2 1 MR FLPT Quad Precision Floating
Sto re

QFST 35 MRFR FLPT Quad Precision Floating
Sto re

QINQ 140572 GEN FLPT V I Quad to Integer, in Quad
Conver t

QIQR 140573 GEN FLPT V I Quad to Integer, in Quad
Convert Rounded

RBQ 141715 AP QUEUE Remove Entry from
Bottom of Queue

RBQ 133 AP QUEUE Remove Entry from
Bottom of Queue

RCB 140200 GEN KEYS V I Reset CBIT to 0
R RMC 000021 GEN INTGY V I Reset Machine Check Flag

to 0
ROT 24 MRGR SHIFT Rotate
RRST 000717 AP MCTL V I Restore Registers
RSAV 000715 AP MCTL V I Save Registers
RTQ 141714 AP QUEUE Remove Entry from Top of

Queue
RTQ 132 RGEN QUEUE Remove Entry from Top of

Queue
R RTS 000511 GEN MCTL V I Reset Time Slice

S 2 2 R I M R G R INT Subtract Ful lword
SIA 140110 GEN INT Subtract 1 from A
S2A 140310 GEN INT Subtract 2 from A
SAR 10026X GEN SKIP Skip on A Register Bit

Reset
to 0

SAS 10126X GEN SKIP Skip on A Register Bit
Set to 1

SBL 07 03 MR INT Subtract Long
SCB 140600 GEN KEYS V I Set CBIT to 1
SCC 55 MRGR CPTR I X Store C Character
SGT 100220 GEN SKIP Skip on A Greater Than 0
SH 3 2 R I M R G R INT Subtract Halfword
SHA 15 MRGR SHIFT Sh i f t A r i t hme t i c
SHL 05 MRGR SHIFT Shi f t Log ica l
SHLl 076 RGEN SHIFT Shift R Left 1
SHL2 077 RGEN SHIFT Shift R Left 2

B-17 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

SHR1 120 RGEN SHIFT Shift R Right 1
SHR2 121 RGEN SHIFT Shift R Right 2
SKP 100000 GEN SKIP Sk ip
SL1 072 RGEN SHIFT Shift R Left 1
SL2 073 RGEN SHIFT Shift R Left 2
SLE 101220 GEN SKIP Skip on A Less Than

or Equal to 0
SLN 101100 GEN SKIP Skip on LSB of A Nonzero
SLZ 100100 GEN SKIP Skip on LSB of A Zero
SMCR 100200 GEN INTGY Skip on Machine Check

Reset to 0
SMCS 101200 GEN INTGY Skip on Machine Check

Set to 1
SMI 101400 GEN SKIP Skip on A Minus
SNZ 101040 GEN SKIP Skip on A Nonzero
SPL 100400 GEN SKIP Skip on A Plus
SRI 074 RGEN SHIFT Shift R Right 1
SR2 075 RGEN SHIFT Shift R Right 2
SRC 100001 GEN SKIP Skip on CBIT Reset to 0
SSC 101001 GEN SKIP Skip on CBIT Set to 1
SSM 140500 GEN INT Set Sign of A Minus
SSM 042 RGEN INT Set Sign Minus
SSP 140100 GEN INT Set Sign of A Plus
SSP 043 RGEN INT Set Sign Plus
SSSN 040310 GEN MCTL VI Store System Serial

Number
ST 21 MRGR MOVE Store Fullword
STA 04 MR MOVE Store A into Memory
STAC 001200 AP MOVE Store A Conditionally

P STAR 54 MRGR MOVE Store into Addressed
R e g i s t e r

STC 0 001322 CHAR CHAR Store Character
STC 0 166 RGEN CHAR Store Character
STC 1 001332 CHAR CHAR Store Character
STC 1 176 RGEN CHAR Store Character
STCD 137 AP MOVE Store Condi t ional

F u l l w o r d
STCH 136 AP MOVE Store Condi t ional

Ha l fword
STEX 001315 GEN PCTLJ Stack Extend
STEX 027 RGEN PCTLJ Stack Extend
STFA 0 001320 AP FIELD V I Store FAR 0
STFA 1 001330 AP FIELD V I Store FAR 1
STH 31 MRGR MOVE Store Halfword

~ >

Second Edition B- l i

INSTRUCTION SUMMARY CHART

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

STL 04 03 MR MOVE Store Long
STLC 001204 AP MOVE Store L Conditionally

P STLR 03 01 MR MOVE Store L into Addressed
R e g i s t e r

R STPM 000024 GEN MCTL V I Store Processor Model
Number

STTM 000510 GEN MCTL V I Store Process Timer
STX 15 MR MOVE Store X
STY 35 02 MR MOVE Store Y
SUB 07 MR INT S u b t r a c t
SVC 000505 GEN PCTLJ V I Supervisor Cal l
SZE 100040 GEN SKIP Skip on A Zero
TAB 140314 GEN MOVE Transfer A to B '
TAK 001015 GEN KEYS Transfer A to Keys
TAX 140504 GEN MOVE Transfer A to X
TAY 140505 GEN MOVE Transfer A to Y
TBA 140604 GEN MOVE Transfer B to A
TC 046 RGEN INT Two's Complement R
TCA 140407 GEN INT Two's Complement A
TCH 047 RGEN INT Two's Complement r
TCL 141210 GEN INT Two's Complement Long
TCNP 7 6 R MRNR CPTR I X Test C Null Pointer
TFLL 0 001323 GEN FIELD Transfer FLR 0 to L
TFLL 1 001333 GEN FIELD Transfer FLR 1 to L
TFLR 0 163 RGEN FIELD Transfer FLR 0 to R
TFLR 1 173 RGEN FIELD Transfer FLR 1 to R
TKA 001005 GEN KEYS Transfer Keys to A
TLFL 0 001321 GEN FIELD Transfer L to FLR 0
TLFL 1 001331 GEN FIELD Transfer L to FLR 1
TM 44 MRNR MCTL Test Memory Fullword
TMH 54 MRNR INT Test Memory Halfword
TRFL 0 165 RGEN FIELD Transfer R to FLR 0
TRFL 1 175 RGEN FIELD Transfer R to FLR 1
TSTQ 141757 AP QUEUE Test Queue
TSTQ 104 RGEN QUEUE Test Queue
TXA 141034 GEN MOVE Transfer X to A
TYA 141124 GEN MOVE Transfer Y to A

R WAIT 000315 AP PRCEX Wai t
X 4 3 R I M R G R LOGIC Exclusive OR Fullword
XAD 001100 DECI DECI V I Decimal Add
XBTD 001145 DECI DECI V I Binary to Decimal

Convers ion
XCM 001102 DECI DECI V I Decimal Compare
XDTB 001146 DECI DECI V I Decimal to Binary

Convers ion

B-19 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table B-l (Continued)
Instruction Summary

R Mnem Opcode RI Form Func Mode CL CC D e s c r i p t i o n

XDV 001107 DECI DECI V I Decimal Divide
XEC 01 02 MR PCTLJ Execute
XED 001112 DECI DECI V I Numeric Edit
XH 5 3 R I M R G R LOGIC Exclusive OR Halfword
XMP 001104 DECI DECI V I Decimal Mult ip ly
XMV 001101 DECI DECI V I Decimal Move
ZCM 001117 CHAR CHAR V I Compare Character Field
ZED 001111 CHAR CHAR V I Character Field Edit
ZFIL 001116 CHAR CHAR VI Fi l l Field With

Charac te r
ZM 43 MRNR CLEAR Clear Ful lword
ZMH 53 MRNR CLEAR Clear Halfword
ZMV 001114 CHAR CHAR V I Move Character Field
ZMVD 001115 CHAR CHAR V I Move Characters Between

Equal Length Strings
ZTRN 001110 CHAR CHAR V I Character Str ing

Tr a n s l a t e

Second Edition B-20

Prime Extended
Character Set

As of Rev. 21.0, Prime has expanded its character set. The basic
character set remains the same as it was before Rev. 21.0: it is the
ANSI ASCII 7-bit set (called ASCII-7), with the 8th bit turned on.
However, the 8th bit is now significant; when it is turned off, it
signifies a different character. Thus, the size of the character set
has doubled, from 128 to 256 characters. This expanded character set
is called the Prime Extended Character Set (Prime ECS).

The pre-Rev. 21.0 character set is a proper subset of Prime ECS. These
characters have not changed. Software written before Rev. 21.0 will
continue to run exactly as it did before. Software written at
Rev. 21.0 that does not use the new characters needs no special coding
to use the old ones.

Prime ECS support is automatic at Rev. 21.0. You may begin to use
characters that have the 8th bit turned off. However, the extra
characters are not available on most printers and terminals. Check
with your System Administrator to find out whether you can take
advantage of the new characters in Prime ECS.

Table C-l shows the Prime Extended Character Set. The pre-Rev. 21.0
character set consists of the characters with decimal values 128
through 255 (octal values 200 through 377). The characters added at
Rev. 21.0 all have decimal values less than 128 (octal values less than
200) .

C - l S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

SPECIFYING PRIME ECS CHARACTERS

Direct Entry

On terminals that support Prime ECS, you can enter the printing
characters directly; the characters appear on the screen as you type
them. For information on how to do this, see the appropriate manual
for your terminal.

A terminal supports Prime ECS if

• It uses ASCII-8 as its internal character set, and

• The TTY8 protocol is configured on your asynchronous line.

If you do not know whether your terminal supports Prime ECS, ask your
System Administrator.

On terminals that do not support Prime ECS, you can enter any of the
ASCII-7 printing characters (characters with a decimal value of 160 or
higher) directly by just typing them.

Octal Notation

If you use the Editor (ED) , you can enter any Prime ECS character on ^
any terminal by typing

^octa l -value

where octal-value is the three-digit octal number given in Table C-l.
You must type all three digits, including leading zeroes.

Before you use this method to enter any of the ECS characters that have
decimal values between 32 and 127, first specify the following ED
command:

MODE CKPAR

This command permits ED to print as Annn any characters that have a
first bit of 0.

Character String Notation

The way in which you specify Prime ECS characters in character strings
in programs depends on the character that you wish to specify. You can

S e c o n d E d i t i o n C - 2

PRIME EXTENDED CHARACTER SET

specify Prime ECS characters on any terminal by using one of the
notations shown below. However, the characters themselves can only
appear on a terminal that supports Prime ECS. Terminals that do not
support Prime ECS will not display the characters correctly.

The following rules describe how to specify Prime ECS characters in
character strings.

1. You can specify printing characters in character strings by
enclosing them in single quotation marks ('). For example:

'Quoted string'

You can enter the characters using either direct entry or octal
notation as described at the beginning of this section.

2. You can specify any character in Prime ECS that has a mnemonic
as follows:

\(mnemonic)

where mnemonic is the Prime mnemonic shown for that character
in Table C-l. The parentheses are essential. You can specify
the mnemonic with either uppercase or lowercase characters.
Some characters have more than one mnemonic; you may use any
one of these. In the table, the alternatives are separated by
a slash character (/). For example:

'A string'\(FF)'with a form feed in it'

The compiler interprets the above example as a single character
s t r i n g .

3. You can specify certain frequently used non-printing characters
as

\abbreviat ion

where abbreviation is one of the following:

C - 3 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

A b b r e v i a t i o n M e a n i n g

B Backspace
E Escape
F Form feed
L Line feed
N New line
R Carriage return
T Horizontal tab
V Vertical tab

For example:

'A string'\F'with a form feed in it'

4. You can specify control characters as

\Acharacter

where Acharacter is listed under "Graphic" in Table C-l. For
example:

'A string'\AL'with a form feed in it'

You may use the commercial at sign (@) in place of the caret
(A) .

5. You can specify control characters as

\ O n n n (o c t a l n o t a t i o n)
\ H n n (h e x a d e c i m a l n o t a t i o n)
\ n n n (d e c i m a l n o t a t i o n)

where Onnn is the letter 0 followed by the three octal digits
shown in Table C-l for the character. Hnn and nnn are the
hexadecimal and decimal equivalents, respect ive ly. For
example:

'A string'\0214'with a form feed in it'

S e c o n d E d i t i o n C - 4

PRIME EXTENDED CHARACTER SET

A character specified with a backslash (that is, with notation 2, 3, 4,
or 5)

• Must appear outside quotation marks

• Specifies a character string of length 1

• Can be specified by itself, or combined with one or more
additional backslash-notation characters, or with one or more
quoted character strings

Spaces between the Prime ECS character specification and the character
string are not significant, but there must be no spaces within the
character specification itself.

The following subroutine call example writes a string specified by
Prime ECS syntax. It contains two occurrences of format 1 and one each
of formats 2, 3, 4, and 5. \(CR) and \AM specify carriage returns; \N
and \0212 specify newlines.

CALL TNOUA
AP =CHELLO'\(CR)\N'THERE'\AM\0212, S
A P = 1 4 , S L

This subroutine call produces the following output

HELLO
THERE

SPECIAL MEANINGS OF PRIME ECS CHARACTERS

PRIMOS, or an applications program running on PRIMOS, may interpret
some Prime ECS characters in a special way. For example, PRIMOS
interprets AP as a process interrupt. ED, the Editor, interprets the
backslash (\) as a logical tab. If you wish to make use of the Prime
ECS backslash character in a file you are editing with ED, you must
define another character as your logical tab.

For a detailed description of how PRIMOS interprets the following Prime
ECS characters, see the discussion in the Prime User's Guide of special
terminal keys and special characters A \ " ? AP AS AQ _ and

C - 5 S e c o n d E d i t i o n

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

ASSEMBLY PROGRAMMING CONSIDERATIONS

Remember that symbols can contain only uppercase letters, numbers, and
the dollar sign and underscore characters ($ and _) . These characters
form a subset of the ASCII-7 character set.

Character strings, however, can contain any character in Prime ECS.
Such strings can be declared as constant or literal strings or as
arguments in subroutine calls that print or display character strings.

You can use notations 2, 3, 4, and 5, described above, alone or in
combination with any quoted string in your program. You cannot,
however, use these notations in symbols when writing your program, nor
can your program's input files contain any of these notations. If your
terminal does not support Prime ECS, you can enter as terminal input
only those characters with decimal numbers greater than 127 (octal
numbers greater than 177).

PRIME EXTENDED CHARACTER SET TABLE

Table C-l contains all of the Prime ECS characters, arranged in
ascending order. This order provides both the collating sequence and
the way that comparisons are done for character strings. For each
character, the table includes the graphic, the mnemonic, the
description, and the binary, decimal, hexadecimal, and octal values. A
blank entry indicates that the particular item does not apply to this
character. The graphics for control characters are specified as
Acharacter; for example, AP represents the character produced when you
type P while holding the control key down.

Characters with decimal values from 000 to 031 and from 128 to 159 are
control characters.

Characters with decimal values from 032 to 127 and from 160 to 255 are
graphic characters.

S e c o n d E d i t i o n C - 6

PRIME EXTENDED CHARACTER SET

Table C-l
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

RES1

RES2

Reserved for future
standardization
Reserved for future
standardization

0000 0000

0000 0001

000

001

00

01

000

001

RES3 Reserved for future
standardization

0000 0010 002 02 002

RES4 Reserved for future
standardization

0000 0011 003 03 003

IND Index 0000 0100 004 04 004
NEL Next line 0000 0101 005 05 005
SSA Start of selected area 0000 0110 006 06 006
ESA End of selected area 0000 0111 007 07 007
HTS Horizontal tabulation set 00001000 008 08 010
HTJ

VTS

Horizontal tab with
justify
Vertical tabulation set

00001001

00001010

009

010

09

0A

011

012
PLD Partial line down 00001011 011 0B 013
PLU Partial line up 00001100 012 OC 014
Rl Reverse index 00001101 013 0D 015
SS2 Single shift 2 00001110 014 0E 016
SS3
DCS
PU1

Single shift 3
Device control string
Private use 1

00001111
0001 0000
0001 0001

015
016
017

OF
10
11

017
020
021

PU2 Private use 2 0001 0010 018 12 022
STS Set transmission state 0001 0011 019 13 023
CCH Cancel character 0001 0100 020 14 024
MW
SPA
EPA
RES5

Message waiting
Start of protected area
End of protected area
Reserved for future
standardization

0001 0101
00010110
0001 0111
0001 1000

021
022
023
024

15
16
17
18

025
026
027
030

RES6 Reserved for future
standardization

0001 1001 025 19 031

RES7 Reserved for future
standardization

0001 1010 026 1A 032

CSI Control sequence
introducer

0001 1011 027 1B 033

ST String terminator 0001 1100 028 1C 034
OSC Operating system

command
0001 1101 029 1D 035

PM Privacy message 0001 1110 030 1E 036

C-7 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table C-l (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

APC Application program
command

0001 1111 031 1F 037

NBSP No-break space 0010 0000 032 20 040
i INVE Inverted exclamation

mark
0010 0001 033 21 041

t CENT Cent sign 0010 0010 034 22 042
£ PND Pound sign 0010 0011 035 23 043
a CURR Currency sign 0010 0100 036 24 044
¥ YEN Yen sign 0010 0101 037 25 045
i
i BBAR Broken bar 00100110 038 26 046
§ SECT Section sign 0010 0111 039 27 047
•• DIA Diaeresis, umlaut 00101000 040 28 050
© COPY Copyright sign 00101001 041 29 051
a FOI Feminine ordinal

indicator
00101010 042 2A 052

« LAQM Left angle quotation
mark

00101011 043 2B 053

- i NOT Not sign 00101100 044 2C 054
SHY Soft hyphen 00101101 045 2D 055

® TM Registered trademark
sign

00101110 046 2E 056

MACN Macron 00101111 047 2F 057
o DEGR Degree sign 0011 0000 048 30 060
± PLMI Plus/minus sign 0011 0001 049 31 061
2 SPS2 Superscript two 00110010 050 32 062
3 SPS3 Superscript three 0011 0011 051 33 063
" AAC Acute accent 00110100 052 34 064
M LCMU Lowercase Greek letter

|i, micro sign
00110101 053 35 065

1 PARA Paragraph sign, Pilgrow
sign

00110110 054 36 066

• MIDD Middle dot 0011 0111 055 37 067
_. CED Cedilla 0011 1000 056 38 070

1 SPS1 Superscript one 0011 1001 057 39 071
O MOI Masculine ordinal

indicator
0011 1010 058 3A 072

» RAQM Right angle quotation
mark

0011 1011 059 3B 073

1/4 FR14 Common fraction
one-quarter

0011 1100 060 3C 074

Second Edition C-!

PRIME EXTENDED CHARACTER SET

Table C-l (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

1 /2 FR12 Common fraction
one-half

0011 1101 061 3D 075

3 / 4 FR34 Common fraction
three-quarters

0011 1110 062 3E 076

6 INVQ Inverted question mark 0011 1111 063 3F 077
A UCAG Uppercase A with grave

accent
0100 0000 064 40 100

A UCAA Uppercase A with acute
accent

0100 0001 065 41 101

A UCAC Uppercase A with
circumflex

0100 0010 066 42 102

A UCAT Uppercase A with tilde 0100 0011 067 43 103
A UCAD Uppercase A with

diaeresis
0100 0100 068 44 104

A UCAR Uppercase A with ring
above

0100 0101 069 45 105

/E UCAE Uppercase diphthong 0100 0110 070 46 106

P UCCC Uppercase C with
cedilla

0100 0111 071 47 107

E UCEG Uppercase E with grave
accent

01001000 072 48 110

E UCEA Uppercase E with acute
accent

01001001 073 49 111

E UCEC Uppercase E with
circumflex

01001010 074 4A 112

E UCED Uppercase E with
diaeresis

01001011 075 4B 113

I UCIG Uppercase I with grave
accent

01001100 076 4C 114

I UCIA Uppercase I with acute
accent

01001101 077 4D 115

T UCIC Uppercase I with
circumflex

01001110 078 4E 116

T UCID Uppercase I with
diaeresis

01001111 079 4F 117

-D UETH Uppercase Icelandic
letter Eth

01010000 080 50 120

N UCNT Uppercase N with tilde 0101 0001 081 51 121
6 UCOG Uppercase 0 with grave

accent
0101 0010 082 52 122

6 UCOA Uppercase 0 with acute
accent

01010011 083 53 123

C-9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table C-l (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

6 ucoc Uppercase 0 with
circumflex

01010100 084 54 124

6 UCOT Uppercase 0 with tilde 0101 0101 085 55 125
6 UCOD Uppercase 0 with

diaeresis
01010110 086 56 126

X MULT Multiplication sign used
in mathematics

0101 0111 087 57 127

0 UCOO Uppercase 0 with
oblique line

0101 1000 088 58 130

U UCUG Uppercase U with grave
accent

0101 1001 089 59 131

u UCUA Uppercase U with acute
accent

0101 1010 090 5A 132
Au UCUC Uppercase U with

circumflex
0101 1011 091 5B 133

u UCUD Uppercase U with
diaeresis

0101 1100 092 5C 134

Y UCYA Uppercase Y with acute
accent

0101 1101 093 5D 135

P UTHN Uppercase Icelandic
letter Thorn

0101 1110 094 5E 136

fl LGSS Lowercase German
letter double s

0101 1111 095 5F 137

a LCAG Lowercase a with grave
accent

0110 0000 096 60 140

a LCAA Lowercase a with acute
accent

0110 0001 097 61 141

a LCAC Lowercase a with
circumflex

0110 0010 098 62 142

a LCAT Lowercase a with tilde 0110 0011 099 63 143
a LCAD Lowercase a with

diaeresis
01100100 100 64 144

oa LCAR Lowercase a with ring
above

01100101 101 65 145

ae LCAE Lowercase diphthong ae 01100110 102 66 146
S LCCC Lowercase c with cedilla 01100111 103 67 147
e LCEG Lowercase e with grave

accent
01101000 104 68 150

e LCEA Lowercase e with acute
accent

01101001 105 69 151

e LCEC Lowercase e with
circumflex

01101010 106 6A 152

Second Edition C-10

PRIME EXTENDED CHARACTER SET

Table C-l (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

e LCED Lowercase e with
diaeresis

01101011 107 6B 153

1 LCIG Lowercase i with grave
accent

01101100 108 6C 154

\ LCIA Lowercase i with acute
accent

01101101 109 6D 155

? LCIC Lowercase i with
circumflex

01101110 110 6E 156

T LCID Lowercase i with
diaeresis

01101111 111 6F 157

6 LETH Lowercase Icelandic
letter Eth

0111 0000 112 70 160

n LCNT Lowercase n with tilde 01110001 113 71 161
6 LCOG Lowercase o with grave

accent
01110010 114 72 162

6 LCOA Lowercase o with acute
accent

0111 0011 115 73 163

6 LCOC Lowercase o with
circumflex

01110100 116 74 164

6 LCOT Lowercase o with tilde 01110101 117 75 165
6 LCOD Lowercase o with

diaeresis
01110110 118 76 166

- r DIV Division sign used in
mathematics

0111 0111 119 77 167

0 LCOO Lowercase o with
oblique line

0111 1000 120 78 170

U LCUG Lowercase u with grave
accent

0111 1001 121 79 171

U LCUA Lowercase u with acute
accent

0111 1010 122 7A 172

u LCUC Lowercase u with
circumflex

0111 1011 123 7B 173

u LCUD Lowercase u with
diaeresis

0111 1100 124 7C 174

y LCYA Lowercase y with acute
accent

0111 1101 125 7D 175

\> LTHN Lowercase Icelandic
letter Thorn

0111 1110 126 7E 176

y LCYD Lowercase y with
diaeresis

0111 1111 127 7F 177

C - l l Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table C-l (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

NUL Null 1000 0000 128 80 200
AA S0H/TC1 Start of heading 1000 0001 129 81 201
AB STX/TC2 Start of text 1000 0010 130 82 202
AC ETX/TC3 End of text 1000 0011 131 83 203
AD E017TC4 End of transmission 1000 0100 132 84 204
AE ENQATC5 Enquiry 1000 0101 133 85 205
AF ACK/TC6 Acknowledge 1000 0110 134 86 206
AG BEL Bell 1000 0111 135 87 207
AH BS/FEO Backspace 10001000 136 88 210
Al HT/FE1 Horizontal tab 10001001 137 89 211
AJ LF/NL/FE2 Line feed 10001010 138 8A 212
AK VT/FE3 Vertical tab 10001011 139 8B 213
AL FF/FE4 Form feed 10001100 140 8C 214
AM CR/FE5 Carriage return 10001101 141 8D 215
AN SO/LS1 Shift out 10001110 142 8E 216
A0 SI/LSO Shift in 10001111 143 8F 217
AP DLE/TC7 Data link escape 1001 0000 144 90 220
AQ DC1/XON Device control 1 1001 0001 145 91 221
AR DC2 Device control 2 10010010 146 92 222
AS DC3/XOFF Device control 3 10010011 147 93 223
AT DC4 Device control 4 10010100 148 94 224
AU NAK/TC8 Negative acknowledge 1001 0101 149 95 225
AV SYNH*C9 Synchronous idle 10010110 150 96 226
AW ETB/TC10 End of transmission

block
10010111 151 97 227

AX CAN Cancel 1001 1000 152 98 230
AY EM End of medium 1001 1001 153 99 231
AZ SUB Substitute 1001 1010 154 9A 232
A[ESC Escape 1001 1011 155 9B 233
A\ FS/IS4 File separator 1001 1100 156 9C 234
1 GS/IS3 Group separator 1001 1101 157 9D 235
/\/\ RS/IS2 Record separator 1001 1110 158 9E 236
a US/IS1 Unit separator 1001 1111 159 9F 237

SP Space 1010 0000 160 A0 240
i Exclamation mark 1010 0001 161 A1 241
" Quotation mark 10100010 162 A2 242
NUMB Number sign 10100011 163 A3 243
$ DOLR Dollar sign 10100100 164 A4 244
% Percent sign 10100101 165 A5 245
& Ampersand 10100110 166 A6 246

Second Edition C-12

PRIME EXTENDED CHARACTER SET

Table C-l (continued)
The Prime Extended Character Set

Graph i c Mnemon i c Desc r i p t i on Binary Decimal Hex Octal

/ Apostrophe 10100111 167 A7 247
(Left parenthesis 10101000 168 A8 250
) Right parenthesis 10101001 169 A9 251
* Asterisk 10101010 170 AA 252
+ Plus sign 10101011 171 AB 253
j Comma 10101100 172 AC 254
- Minus sign 10101101 173 AD 255
. Period 10101110 174 AE 256
/ Slash 10101111 175 AF 257
0 Zero 1011 0000 176 B0 260
1 One 10110001 177 B1 261
2 Two 10110010 178 B2 262
3 Three 10110011 179 B3 263
4 Four 1011 0100 180 B4 264
5 Five 1011 0101 181 B5 265
6 Six 10110110 182 B6 266
7 Seven 10110111 183 B7 267
8 Eight 1011 1000 184 B8 270
9 Nine 1011 1001 185 B9 271
i Colon 1011 1010 186 BA 272
* Semicolon 1011 1011 187 BB 273
< Less than sign 1011 1100 188 BC 274
= Equal sign 1011 1101 189 BD 275
> Greater than sign 1011 1110 190 BE 276
? Question mark 1011 1111 191 BF 277
@ A T Commercial at sign 1100 0000 192 CO 300
A Uppercase A 1100 0001 193 C1 301
B Uppercase B 1100 0010 194 C2 302
C Uppercase C 1100 0011 195 C3 303
D Uppercase D 1100 0100 196 C4 304
E Uppercase E 11000101 197 C5 305
F Uppercase F 1100 0110 198 C6 306
G Uppercase G 1100 0111 199 C7 307
H Uppercase H 11001000 200 C8 310
I Uppercase I 11001001 201 C9 311

J Uppercase J 11001010 202 CA 312
K Uppercase K 11001011 203 CB 313
L Uppercase L 11001100 204 CC 314
M Uppercase M 11001101 205 CD 315
N Uppercase N 11001110 206 CE 316

C-13 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Table C-l (continued)
The Prime Extended Character Set

Graphic M n e m o n i c D e s c r i p t i o n Binary Decimal Hex Octal

0 Uppercase 0 1100 1111 207 CF 317
P Uppercase P 11010000 208 DO 320
Q Uppercase Q 11010001 209 D1 321
R Uppercase R 11010010 210 D2 322
S Uppercase S 11010011 211 D3 323
T Uppercase T 11010100 212 D4 324
U Uppercase U 11010101 213 D5 325
V Uppercase V 11010110 214 D6 326
w Uppercase W 11010111 215 D7 327
X Uppercase X 1101 1000 216 D8 330
Y Uppercase Y 1101 1001 217 D9 331
z Uppercase Z 1101 1010 218 DA 332
[LBKT Left bracket 1101 1011 219 DB 333
\ REVS Reverse slash,

backslash
1101 1100 220 DC 334

] RBKT Right bracket 11011101 221 DD 335
**• C F L X C i r c u m fl e x 1101 1110 222 DE 336

Underline, underscore 1101 1111 223 DF 337
GRAV Left single quote, grave

accent
11100000 224 E0 340

a Lowercase a 1110 0001 225 E1 341
b Lowercase b 11100010 226 E2 342
c Lowercase c 1110 0011 227 E3 343
d Lowercase d 11100100 228 E4 344
e Lowercase e 11100101 229 E5 345
f Lowercase f 11100110 230 E6 346
g Lowercase g 11100111 231 E7 347
h Lowercase h 11101000 232 E8 350
i Lowercase i 11101001 233 E9 351
i Lowercase j 11101010 234 EA 352
k Lowercase k 11101011 235 EB 353
1 Lowercase 1 11101100 236 EC 354

m Lowercase m 11101101 237 ED 355
n Lowercase n 11101110 238 EE 356
0 Lowercase o 11101111 239 EF 357
P Lowercase p 1111 0000 240 F0 360
q Lowercase q 1111 0001 241 F1 361
r Lowercase r 1111 0010 242 F2 362
s Lowercase s 11110011 243 F3 363
t Lowercase t 1111 0100 244 F4 364

Second Edition C-14

PRIME EXTENDED CHARACTER SET

Table C-l (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

u
v
w
X
y
z

LBCE
VERT
RBCE
TIL
DEL

Lowercase u
Lowercase v
Lowercase w
Lowercase x
Lowercase y
Lowercase z
Left brace
Vertical line
Right brace
Tilde
Delete

11110101 245 F5 365
11110110 246 F6 366
1111 0111 247 F7 367
1111 1000 248 F8 370
1111 1001 249 F9 371
1111 1010 250 FA 372
1111 1011 251 FB 373
1111 1100 252 FC 374
1111 1101 253 FD 375
1111 1110 254 FE 376
11111111 255 FF 377

C-15 Second Edition

Indexes

Index

A (I) , 9 - 2 5

A1A (V) , 8 -9

A2A (V) , 8 -9

A B Q (I) , 9 - 3 3

ABQ (V), 8-31

ACA (V), 8-10

ACP (IX) , 10 -4

ADD (V), 8-23

A d d r e s s ,
e f f e c t i v e , 8 - 1 , 9 - 1
I m o d e d i r e c t , 9 - 3
I mode indexed, 9-3
I mode indirect, 9-3
I mode indirect indexed, 9-4
V mode direct, 8-2
V mode indexed, 8-3
V mode indirect, 8-3
V mode indirect indexed, 8-4
virtual, 8-1, 9-1

Address constant, 5-2

Address format,
general register relative,

1-2, 9-6
immediate, 1-2, 9-8
register to register, 1-2, 9-7

Addressing,
general register relative, 9-6
immediate, 9-8
register to register, 9-7

Addressing mode,
changing within a program,

(See also D32I
pseudo-operation; D64V
pseudo-operation)

I, 9-1 to 9-34
IX) 1-2, 10-1 to 10-4
matching program and loader

(See ELM pseudo-operation)
V, 8-1 to 8-33

ADL (V), 8-23

ADLL (V), 8-10

ADLR (I), 9-13

AH (I), 9-25

AIP (IX), 10-2

X - l Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

ALFA (V), 8-29

ALL (V), 8-12

ALR (V), 8-12

ALS (V), 8-12

ANA (V), 8-20

ANL (V), 8-20

AP pseudo-operation, 5-2

ARFA (I), 9-32

ARGT (I), 9-33

ARGT (V) , 8-31

Arguments, passing (See ECB
pseudo-operation)

ARL (V), 8-12

ARR (V), 8-12

ARS (V), 8-12

Assembler,
attributes, 1-1, 11-3
attributes, l ist of, 11-10
command line options, 2-2
cross reference table, 2-4
escape character, 3-3
file naming conventions, 2-3
file usage, 2-3
invoking, 2-1
listing format, 2-4
listing symbology, 2-6
messages, 2-4
output file concatenation, 2-4
symbol table, 1-1, 2-1

Aster isk ,
in operand field, 3-10
use in DAC pseudo-operation,

5-3

ATQ (I), 9-33

ATQ (V), 8-31

Attributes, assembler, 1-1, 11-3
list of, 11-10

B

BACK pseudo-operation, 4-5

BCEQ (I), 9-17

BCEQ (V), 8-15

BCGE (I), 9-17

BCGE (V), 8-15

BCGT (I), 9-17

BCGT (V), 8-15

BCI pseudo-operation, 5-5

BCLE (I), 9-17

BCLE (V), 8-15

BCLT (I), 9-17

BCLT (V), 8-15

BCNE (I), 9-17

BCNE (V), 8-15

BCR (I), 9-18

BCR (V), 8-15

BCS (I), 9-18

BCS (V), 8-15

BCZ pseudo-operation, 5-5

BDX (V), 8-15

BDY (V), 8-15

BEQ (V), 8-14

BES pseudo-operation, 5-13

BFEQ (I), 9-17

Second Edition X-2

INDEX

BFEQ (V), 8-15

BFGE (I), 9-17

BFGE (V), 8-15

BFGT (I), 9-17

BFGT (V), 8-15

BFLE (I), 9-17

BFLE (V), 8-15

BFLT (I), 9-17

BFLT (V), 8-15

BFNE (I), 9-17

BFNE (V), 8-15

BGE (V) , 8-14

BGT (V) , 8-14

BHD1 (I) , 9-18

BHD2 (I) , 9-18

BHD4 (I) , 9-18

BHEQ (I) , 9-17

BHGE (I) , 9-17

BHGT (I) , 9-17

BHI1 (I) , 9-18

BHI2 (I) , 9-18

BHI4 (I) , 9-18

BHLE (I) , 9-17

BHLT (I) , 9-17

BHNE (I) , 9-17

BIND l inker, 13-3

BIX (V), 8-15

BIY (V)

BLE (V)

BLEQ (V

BLGE (V

BLGT (V

BLLE (V

BLLT (V

BLNE (V

BLR (I)

BLR (V)

BLS (I)

BLS (V)

BLT (V)

BMEQ (I

BMEQ (V

BMGE (I

BMGE (V

BMGT (I

BMGT (V

BMLE (I

BMLE (V

BMLT (I

BMLT (V

BMNE (I

BMNE (V

BNE (V)

8-15

8-14

8-14

8-14

8-14

8-14

8-14

8-14

9-18

8-15

9-18

8-15

8-14

9-17

8-15

9-17

8-15

9-17

8-15

9-17

8-15

9-17

8-15

9-17

8-15

8-14

X-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Branch ins t ruc t ions ,
I mode, 9-16 to 9-11
V mode, 8-14, 8-15

BRBR ID, 9-17

BRBS 'D, 9-17

BRD1 I) , 9-18

BRD2 I) , 9-18

BRD4 I) , 9-18

BREQ I) , 9-17

BRGE I) , 9-17

BRGT I) , 9-17

BRI l I) , 9-18

BRI2 I) , 9-18

BRI4 I) , 9-18

BRLE (I) , 9-17

BRLT < I) , 9-17

BRNE < I) , 9-17

BSS ps>eudo--ope ra t i on , 5 -13

BSZ ps eudo--ope ra t i on , 5 -13

B u f f e r• spa<ze al locat ion, 5-12

C (I), 9-23

C language pointer, 1-2

C language related instructions,
10-3

CAL (V), 8-10

CALF (I), 9-33

CALF (V), 8-31

CALL pseudo-operation, 6-4, 12-7

CAR (V), 8-10

CAS (V) , 8-21

CAZ (V) , 8-13

CCP (IX), 10-4

CENT pseudo-operation, 6-2

CGT (I), 9-18

CGT (V), 8-16

CH (I), 9-23

Character and field instruct ions,
I mode, 9-32
V mode, 8-30

Character and field operations,
8-28, 9-29

CHS (I), 9-13

CHS (V), 8-10

CLS (V), 8-21

CMA (V) , 8-10

CMH (I), 9-12

CMR (I), 9-12

COMM pseudo-operation, 5-13

Command line options, assembler,
2 -2

Comment field, 3-3
funct ion of , 3-13

Comment lines, 3-1

COMMON, FORTRAN-compatible, 5-13

Computed go to instruction,
I mode, 9-18
V mode, 8-16

Second Edition X-4

INDEX

Concatenation, assembler output
fi l e , 2 - 4

Constants,
address, 5-2
c h a r a c t e r , 5 - 6
dec ima l , 5 -9
fixed po in t , 5 -8
fl o a t i n g p o i n t , 5 - 9
hexadec imal , 5-9
i n t e g e r , 5 - 7
o c t a l , 5 - 1 0
scal ing of , 5-8
types of, 3-4
v a r i a b l e fi e l d d e fi n i t i o n ,

5-10

Cont inua t ion l i ne , 3 -3

CR (I), 9-12

CRA (V) , 8-9

CRB (V) , 8-9

CRBL (I), 9-12

CRBR (I), 9-12

CRE (V), 8-9

CRHL (I), 9-12

CRHR (I), 9-12

CRL (V) , 8-9

CRLE (V) , 8-9

Cross reference l ist ing
symbology, 2-7

Cross reference table, assembler,
2 -4

CSA (V), 8-10

CSR (I), 9-13

D (I), 9-25

D32I pseudo-operat ion, 6-3

D64V pseudo-operation, 6-2

DAC pseudo-operation, 5-2
asterisks in operand of, 5-3
for return address storage,

5-3

DATA pseudo-operation, 5-6

DBLE (I), 9-28

DCP (IX), 10-4

Debugging,
program invocation for IPSD,

14-14
program invocation for VPSD,

14-2
using IPSD, 14-14
using VPSD, 14-2

Debugging an assembled program,
14-2

DEC pseudo-operation, 5-9

Dec imal a r i thmet ic ins t ruc t ions ,
I mode, 9-25 to 9-27
V mode, 8-23

Decimal conversion and editing
i n s t r u c t i o n s ,

I mode, 9-26, 9-27
V mode, 8-23

DFA (I), 9-29

DFAD (V), 8-27

DFC (I), 9-28

DFCM (I), 9-28

DFCM (V), 8-2 6

DFCS (V), 8-26

DFD (I), 9-29

DFDV (V), 8-27

DFL (I), 9-28

X-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

DFLD (V), 8-2 6

DFLX (V), 8-27

DFM (I), 9-29

DFMP (V), 8-27

DFS (I), 9-29

DFSB (V), 8-27

DFST (I), 9-28

DFST (V), 8-26

DFTB pseudo-operation, 4-6

DFVT pseudo-operation, 4-6

DH (I), 9-25

DH1 (I), 9-12

DH2 (I), 9-12

DIV (V), 8-23

DM (I), 9-25

DMH (I), 9-25

DR1 (I), 9-12

DR2 (I), 9-12

DRN (I), 9-29

DRN (V), 8-27

DRNM (I), 9-2 9

DRNM (V), 8-27

DRNP (I), 9-29

DRNP (V), 8-27

DRNZ (I), 9-29

DRNZ (V), 8-27

DRX (V), 8-13

DUII pseudo-operat ion, 6-3

DVL (V), 8-23

Dynamic storage, 4-12

DYNM pseudo-operation, 4-11

DYNT pseudo-operation, 6-4

E16S (I) , 9-33

E16S (V), 8-30

E32I (I) , 9-33

E32I (V), 8-30

E32R (I) , 9-33

E32R (V), 8-30

E32S (I) , 9-33

E32S (V) , 8-30

E64R (I) , 9-33

E64R (V), 8-30

E64V (I) , 9-33

E64V (V), 8-30

EAFA (I) , 9-32

EAFA (V), 8-29

EAL V) , 8-20

EALB (I) , 9-21

EALB (V), 8-20

EAR { I) , 9-21

EAXB (I) , 9-21

EAXB (V), 8-20

Second Edition X-6

INDEX

ECB pseudo-operation, 6-5, 12-14

EIO (I), 9-34

EIO (V), 8-32

EJCT pseudo-operation, 4-15

ELM pseudo-operation, 6-3

ELSE pseudo-operation, 4-7

ENB (I), 9-34

ENB (V), 8-32

ENBL (I), 9-34

ENBL (V), 8-32

ENBM (I), 9-34

ENBM (V), 8-32

ENBP (I), 9-34

ENBP (V), 8-32

END pseudo-operation, 4-2

ENDC pseudo-operation, 4-7

ENDM pseudo-operation, 7-3, 11-2

ENT pseudo-operation, 6-7, 12-14

EQU pseudo-operation, 4-13

Equal sign in operand field,
3-11

ERA (V), 8-20

ERL (V), 8-20

Escape character, 3-3

Executing an assembled program,
14-1

Expression operators,
ar i thmet ic , 3-8
log ica l , 3 -8
prior i ty of, 3-9

Expression operators (continued)
re la t i ona l , 3 -8
sh i f t , 3 -9

Expressions,
conventions used in, 3-9
definit ion of, 3-7
resultant mode of, 3-10
signs in, 3-9
spaces in, 3-9

EXT pseudo-operation, 6-6, 12-7

Extended character set (See
Prime ECS)

External subroutine, 12-1, 12-7
to 12-14

argument passing to, 12-14
CALL pseudo-operation, 12-7
entrypoint to, 12-8
PCL vs. CALL mechanism, 12-8

to 12-14
PRTN return from, 12-14
returning from, 12-14
role of ECB in, 12-14
SHORTCALL mechanism, 12-15 to

12-20

FA (I), 9-29

FAD (V), 8-27

FAIL pseudo-operation, 4-7

FC (I), 9-28

FCDQ (I), 9-28

FCDQ (V), 8-2 6

FCM (I), 9-28

FCM (V), 8-2 6

FCS (V), 8-26

FD (I), 9-29

FDBL (V), 8-26

X-7 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

FDV (V), 8-27

F ie ld reg i s te r i ns t ruc t i ons ,
I mode, 9-32
V mode, 8-29

File naming conventions,
assembler, 2 -3

File usage, assembler, 2-3

FIN pseudo-operation, 5-11

FL (I), 9-28

FLD (V), 8-2 6

F loa t ing po in t ins t ruc t ions ,
I mode, 9-27
I mode accumulator, 9-28
I mode arithmetic, 9-29
I mode conversion, 9-28
I mode rounding, 9-29
V mode, 8-25
V mode accumulator, 8-26
V mode arithmetic, 8-27
V mode conversion, 8-26
V mode load index, 8-27
V mode rounding, 8-27

FLT (I), 9-28

FLTA (V), 8-2 6

FLTH (I), 9-28

FLTL (V), 8-26

FLX (V), 8-27

FM (I), 9-29

FMP (V), 8-27

FRN (I), 9-29

FRN (V), 8-27

FRNM (I), 9-29

FRNM (V), 8-27

FRNP (I), 9-2 9

FRNP (V) , 8-27

FRNZ (I), 9-29

FRNZ (V), 8-27

FS (I), 9-29

FSB (V), 8-27

FSGT (V), 8-26

FSLE (V), 8-26

FSMI (V), 8-26

FSNZ (V), 8-26

FSPL (V), 8-26

FST (I), 9-28

FST (V), 8-26

FSZE (V), 8-26

General register relat ive address
format, 1-2, 9-6

Gener i c ins t ruc t ions ,
I mode register, 9-11
I mode shift, 9-14
V mode accumulator, 8-8
V mode shift, 8-11
V mode skip, 8-12

GO pseudo-operation, 4-7

GRR (See General register
relative address format)

H

Header l ines, 3-1

HEX pseudo-operation, 5-9

HLT (I), 9-33

Second Edition X-i

INDEX

HLT (V), 8-31

I (I) , 9 -21

I addressing mode, 9-1 to 9-34

I mode machine instructions, 9-1
to 9-34

IAB (V), 8-9

ICA (V), 8-10

ICBL (I), 9-12

ICBR (I), 9-12

ICHL (I), 9-12

ICHR (I), 9-12

ICL (V), 8-10

ICP (IX), 10-4

ICR (V) , 8-10

IF pseudo-operat ion, 4-7

IFM pseudo-operation, 4-9

IFN pseudo-operation, 4-9

IFP pseudo-operat ion, 4-9

IFTF pseudo-operation, 4-10

IFTT pseudo-operation, 4-10

IFVF pseudo-operation, 4-10

IFVT pseudo-operation, 4-10

IFx pseudo-operat ion, 4-8

IFZ pseudo-operat ion, 4-9

IH (I) , 9-21

IH1 (I) , 9-12

IH2 (I) , 9-12

ILE (V), 8-9

IM (I), 9-25

IMA (V), 8-20

IMH (I), 9-25

Immediate address format, 1-2,
9-8

Impure procedure segment, 4-4

INBC (I), 9-34

INBC (V) , 8-32

INBN (I), 9-34

INBN (V), 8-32

Ind i rec t po in te r re la ted
i n s t r u c t i o n s , 1 0 - 1

INEC (I), 9-34

INEC (V), 8-32

INEN (I), 9-34

INEN (V), 8-32

INH (I), 9-34

INH (V), 8-32

INHL (I), 9-34

INHL (V), 8-32

INHM (I), 9-34

INHM (V) , 8-32

INHP (I), 9-34

INHP (V), 8-32

INK (I), 9-13

X-9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

I n s t r u c t i o n s ,
accumulator generic, V mode,

8-8
address t rans la t ion , 8 -32
branch, I mode, 9-16 to 9-18
branch, V mode, 8-14, 8-15
C language related, 10-3
character and field, I mode,

9-32
character and field, V mode,

8-30
decimal arithmetic, I mode,

9-25 to 9-27
decimal arithmetic, V mode,

8-23 to 8-25
decimal conversion and editing,

I mode, 9-26, 9-27
decimal conversion and editing,

V mode, 8-23 to 8-25
direct long form, I mode, 9-1
direct long form, V mode, 8-1
field register, I mode, 9-32
field register, V mode, 8-2 9
floating point accumulator, I

mode, 9-28
floating point accumulator, V

mode, 8-2 6
float ing po in t a r i thmet ic , I

mode, 9-29
float ing point ar i thmet ic , V

mode, 8-27
floating point conversion, I

mode, 9-28
floating point conversion, V

mode, 8-2 6
floating point load index, V

mode, 8-27
floating point rounding, I

mode, 9-2 9
floating point rounding, V

mode, 8-27
floating point, I mode, 9-27
floating point, V mode, 8-25
generic, I mode, 9-11 to 9-16
generic, V mode, 8-8 to 8-13
hardware related, 8-31
indirect long form, I mode,

9-1
indirect long form, V mode,

8-1
ind i rec t po in te r re la ted , 10-1
inpu t /ou tpu t , 8 -32 , 9 -34
integer arithmetic, I mode,

9-23

Ins t ruc t ions (con t inued)
integer arithmetic, V mode,

8-21
i n t e r - p r o c e d u r e t r a n s f e r,

8-31, 9-33
inter rupt handl ing, 8-32, 9-34
jump and store, I mode, 9-20
jump and store, V mode, 8-17
jump, I mode, 9-19, 9-20
jump, V mode, 8-16 to 8-18
memory reference, I mode, 9-21
memory reference, V mode, 8-19
memory test and skip, V mode,

8-21
memory test, I mode, 9-23
memory/register logic, I mode,

9-22
memory/register logic, V mode,

8-20
memory / reg is ter t rans fer, I

mode, 9-21
memory/register t ransfer, V

mode, 8-19
miscel laneous process related,

8-31, 9-33
misce l l aneous res t r i c ted ,

8-32, 9-34
process exchange, 8-32, 9-34
process related, 8-31, 9-32
process related, I mode, 9-32
process related, V mode, 8-30
queue management, 8-31, 9-33
register generic, I mode, 9-11
res t r i c t ed , 8 -32 , 9 -34
semaphore, 8-32, 9-34
shift generic, I mode, 9-14
shift generic, V mode, 8-11
short form, I mode, 9-1
short form, V mode, 8-1
skip, V mode, 8-12

INT (I), 9-28

INTA (V), 8-26

In teger a r i t hmet i c i ns t ruc t i ons ,
I mode, 9-23
V mode, 8-21

INTH (I), 9-2 8

INTL (V), 8-26

Invoking the assembler, 2-1

Second Edition X-10

INDEX

IP pseudo-operat ion, 5-3

IPSD, debugging with, 14-14 to
14-21

IPSD, differences between VPSD
and,

b reakpo in t s , 14 -18
DUMP subcommand, 14-20
erase and kill characters,

14-19
FR subcommand, 14-18
GR subcommand, 14-18
HR subcommand, 14-18
immediate operands, 14-20
MODE subcommand, 14-17
PRINT subcommand, 14-18
use with CPL and COMI files,

14-19

IR1 (I) , 9-12

IR2 (I) , 9-12

IRB (I), 9-12

IRH (I), 9-12

IRS (V), 8-21

IRTC (I), 9-34

IRTC (V), 8-32

IRTN (I), 9-34

IRTN (V), 8-32

IRX (V), 8-13

ITLB (I) , 9-34

ITLB (V), 8-32

IX addressing mode, 1-2, 10-1 to
10-4

IX mode machine instructions,
10-1 to 10-4

JMP (I), 9-19

JMP (V), 8-17

JSR (I), 9-20, 12-5

JST (V), 8-18, 12-2

JSX (V), 8-18, 12-2

JSXB (I), 9-20, 12-6

JSXB (V), 8-18, 12-3

JSY (V), 8-18, 12-3

Jump instruct ions,
I mode, 9-19, 9-20
V mode, 8-16 to 8-18

L (I) , 9-21

Labe l fie l d , 3 -3
funct ion o f , 3 -10

LCC (IX), 10-4

LCEQ (I) , 9-13

LCEQ (V), 8-10

LCGE (I) , 9-13

LCGE (V), 8-10

LCGT (I) , 9-13

LCGT (V), 8-10

LCLE (I) , 9-13

LCLE (V), 8-10

LCLT (I) , 9-13

LCLT (V), 8-10

LCNE (I) , 9-13

X - l l Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

LCNE (V), 8-10

LDA (V), 8-20

LDAR (I), 9-21

LDC (I), 9-32

LDC (V), 8-30

LDL (V), 8-20

LDLR (V), 8-20

LDX (V), 8-20

LDY (V), 8-20

LEQ (I), 9-14

LEQ (V), 8-11

LF (I) , 9-13

LF (V), 8-10

LFEQ (I), 9-14

LFEQ (V)

LFGE (I)

LFGE (V)

LFGT (I)

LFGT (V)

LFLE (I)

LFLE (V)

LFLI (I)

LFLI (V)

LFLT (I)

LFLT (V)

LFNE (I)

LFNE (V)

8 -11

9-14

8-11

9-14

8-11

9-14

8-11

9-32

8-29

9-14

8-11

9-14

8-11

LGE (I), 9-14

LGE (V), 8-11

LGT (I), 9-14

LGT (V), 8-11

LH (I), 9-21

LHEQ (I), 9-14

LHGE (I), 9-14

LHGT (I), 9-14

LHLl (I) , 9-22

LHL2 (I), 9-22

LHL3 (I), 9-22

LHLE (I), 9-14

LHLT (I), 9-14

LHNE (I), 9-14

L i n e ,
comment, 3-1
c o n t i n u a t i o n , 3 - 3
header, 3 -1
s ta tement , 3 -1

LINK pseudo-operation, 4-2

L i n k i n g ,
using BIND, 13-3
using SEG, 13-2

Linking an assembled program,
13-1 to 13-3

LIOT (I), 9-34

LIOT (V), 8-32

LIP (IX), 10-2

LIR pseudo-operation, 6-4

LIST pseudo-operation, 4-15

List ing format, assembler, 2-4

Second Edition X-12

INDEX

L i t e r a l s ,
control of placement of, 5-11
I mode processing of, 3-13
in operand field, 3-11
processing at END statement,

4-2
V mode processing of, 3-13
values defined by expressions,

3-12

LLE (I), 9-14

LLE (V), 8-11

LLEQ (V) , 8-11

LLGE (V) , 8-11

LLGT (V) , 8-11

LLL (V), 8-12

LLLE (V), 8-11

LLLT (V) , 8-11

LLNE (V), 8-11

LLR (V) , 8-12

LLS (V), 8-12

LLT (I), 9-14

LLT (V), 8-11

LNE (I), 9-14

LNE (V), 8-11

Local subroutine, 12-1 to 12-5
calling in I mode, 12-5, 12-6
calling in V mode, 12-2 to

12-5
JSR call, 12-5
JST call, 12-2
JSX call, 12-2
JSXB call (I mode), 12-6
JSXB call (V mode), 12-3
JSY call, 12-3

Location counter,
mode and value of, 4-3

Long form instructions,
I mode direct, 9-1
I mode indirect, 9-1
V mode direct, 8-1
V mode indirect, 8-1

LPID (I), 9-34

LPID (V), 8-32

LPSW (I), 9-34

LPSW (V), 8-32

LRL (V), 8-12

LRR (V), 8-12

LRS (V), 8-12

LSMD pseudo-operation, 4-15

LSTM pseudo-operation, 4-15

LT (I), 9-13

LT (V), 8-10

M

M (I), 9-25

MAC pseudo-operation, 7-3, 11-2

Machine instruction statement,
3-2, 3-16

Machine instructions, (See also
Inst ruc t ions)

I mode, 9-1 to 9-34
IX mode, 10-1 to 10-4
V mode, 8-1 to 8-33

Macro,
argument identifier, 11-7
argument reference, 7-2, 11-2,

11-3, 11-5
argument substitution, 11-5
argument value, 7-2, 11-2,

11-5
attribute references, 11-4
calling a, 7-2

X-13 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Macro (continued)
code groups, 7-3
condit ional assembly in, 11-5,

11-9
defin i t i on b lock , 7 -2 , 7 -3
dummy word, 11-2, 11-6
l i s t i n g c o n t r o l , 11 - 9
loca l l abe l s , 11 -4
name, 7-2, 7-3, 11-1, 11-2
n e s t i n g , 11 - 8
placement of in program, 7-3,

11-2

Macro call, 3-2, 7-2, 11-1, 11-4
using as documentation, 11-6

Macro defini t ion, 3-2, 11-1,
11-2

Macro facil i ty, 11-1 to 11-10

Memory reference instructions,
I mode, 9-21
V mode, 8-19

Memory test and skip
i n s t r u c t i o n s ,

V-mode, 8-21

Memory test instructions,
I mode, 9-23

Memory/ reg is ter log ic
i n s t r u c t i o n s ,

I mode, 9-22
V mode, 8-20

Memory / reg is te r t rans fer
i n s t r u c t i o n s ,

I mode, 9-21
V mode, 8-19

Messages, assembler, 2-4

MH (I), 9-25

MPL (V), 8-23

MPY (V), 8-23

N (I), 9-22

NFYB (I), 9-34

NFYB (V), 8-33

NFYE (I), 9-34

NFYE (V), 8-33

NH (I), 9-22

NLSM pseudo-operation, 4-15

NLST pseudo-operation, 2-4, 4-15

NOP (I), 9-33

NOP (V), 8-31

0

0 (I) , 9-22

OCT pseudo-operation, 5-10

OH (I), 9-22

Operand field, 3-3
func t ion o f , 3 -11
function of equal sign in,

3-12
funct ions of aster isk in, 3-11
l i t e r a l s i n , 3 - 11

Opera t i on fie ld , 3 -3
func t ion o f , 3 -11

ORA (V), 8-20

ORG pseudo-operation, 4-3

OTK (I), 9-13

PCL (I), 9-33

Second Edition X-14

INDEX

PCL (V), 8-31

PCL vs. CALL mechanism, 12-8 to
12-14

PCVH pseudo-operation, 4-16

PID (I), 9-24

PIDA (V), 8-22

PIDH (I), 9-24

PIDL (V), 8-22

PIM (I), 9-24

PIMA (V) , 8-22

PIMH (I), 9-24

PIML (V) , 8-22

Pointer,
argument, 5-2
C language, 1-2
indirect, 5-2, 5-3
to external module, 5-3

Prime ECS, 1-2, C-l
Assembly programming

considerations, C-6
Character entry formats, C-2

to C-5
Character set table, C-7 to

C-15
Special meanings of some

characters, C-5
Terminal requirements for, C-2

Prime Extended Character Set
(See Prime ECS)

PROC pseudo-operation, 4-3

Program debugging, 14-2

Program execution, 14-1

Program linking, 13-1 to 13-3

Program structure, 3-17

PRTN (I), 9-33

PRTN (V) , 8-31

PRTN return from external
subroutine, 12-14

Pseudo-operations, 3-2
address definition (AD), 5-2
AP, 5-2
assembly control (AC), 4-1
BACK, 4-5
BCI, 5-5
BCZ, 5-5
BES, 5-13
BSS, 5-13
BSZ, 5-13
CALL, 6-4, 12-7
CENT, 6-2
classes of, 3-14
COMM, 5-13
conditional assembly (CA), 4-5
D32I, 6-3
D64V, 6-2
DAC, 5-2
DATA, 5-6
data definition (DD), 5-4
DEC, 5-9
DFTB, 4-6
DFVT, 4-6
DUII, 6-3
DYNM, 4-11
DYNT, 6-4
ECB, 6-5, 12-14
EJCT, 4-15
ELM, 6-3
ELSE, 4-7
END, 4-2
ENDC, 4-7
ENDM, 7-3, 11-2
ENT, 6-7, 12-14
EQU, 4-13
EXT, 6-6, 12-7
FAIL, 4-7
FIN, 5-11
functions of, 3-13
GO, 4-7
HEX, 5-9
IF, 4-7
IFM, 4-9
IFN, 4-9
IFP, 4-9
IFTF, 4-10
IFTT, 4-10
IFVF, 4-10
IFVT, 4-10

X-15 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

seudo-ope ra t i ons (cont inued)
I F x , 4-8
IFZ, 4 -9
I P, 5 -3
LINK, 4-2
L IR, 6-4
L IST, 4-15
l i s t o f , 3 - 1 5
l i s t i ng control (LC), 4-14
l i t e r a l c o n t r o l (LT) , 5-11
loade r control (LD), (5-1, 6-2
LSMD, 4-15
LSTM, 4-15
MAC, 7-3, 11-2
macro d e fi n i t i o n (MD), 7 -1
NLSM, 4-15
NLST, 2-4, 4-15
OCT, 5-10
ORG, 4-3
PCVH, 4-16
PROC, 4-3
program l inking (PL), 6-4
RLIT, 5-11
SAY, 7-3
SCT, 7 -3
SCTL, 7-6
SEG, 4-3
SEGR, 4-4
SET, 4-13
storage allocation (SA] , 5-12
SUBR, 6-7
symbo 1 defining (SD), 4-11
SYML, 6-7
VFD, 5-10
XAC, 5-4
XSET, 4-13

PTLB (I), 9-34

PTLB (V), 8-32

Pure procedure segment, 4-4

Q

QFAD (I), 9-2 9

QFAD (V), 8-27

QFC (I), 9-28

QFCM (I), 9-28

QFCM (V) r 8-26

QFCS (V) t 8-26

QFDV (I) , 9-29

QFDV (V) r 8-27

QFLD (I) r 9-28

QFLD (V) , 8-26

QFLX (V) r 8-27

QFMP (I) r 9-29

QFMP (V) , 8-27

QFSB (I) , 9-29

QFSB (V) , 8-27

QFST (I) , 9 - 2 8

QFST (V) r 8-26

QINQ (I) , 9-28

QINQ (V), 8-26

QIQR (I) , 9-28

QIQR (V), 8-26

QMCS (V), 8-26

R

RBQ (I), 9-33

RBQ (V), 8-31

RCB (I), 9-13

RCB (V), 8-10

Register to register address
format, 1-2, 9-7

Second Edition X-16

INDEX

Reg is te rs ,
correspondence between V mode

and I mode, 8-7, 9-10
saving and restoring, 8-7, 9-9
size of, 8-6, 9-9
visible to I mode programs,

9-9
visible to V mode programs,

8-6

RLIT pseudo-operat ion, 5-11

RMC (I), 9-34

RMC (V), 8-33

ROT (I), 9-16

RRST (I), 9-22

RRST (V), 8-20

RSAV (I), 9-22

RSAV (V), 8-20

RTQ (I), 9-33

RTQ (V), 8-31

RTS (I), 9-34

RTS (V), 8-33

S (I), 9-25

SIA (V), 8-9

S2A (V), 8-9

SAR (V), 8-13

SAS (V), 8-13

SAY pseudo-operation, 7-3

SBL (V), 8-23

SCB (I), 9-13

SCB (V), 8-10

SCC (IX), 10-4

SCT pseudo-operation, 7-3

SCTL pseudo-operation, 7-6

SEG linker, 13-2

SEG pseudo-operation, 4-3

Segment number, 8-1, 9-1

SEGR pseudo-operation, 4-4

SET pseudo-operation, 4-13

SGT (V), 8-13

SH (I), 9-25

SHA (I), 9-16

SHL (I), 9-15

SHLl (I), 9-15

SHL2 (I), 9-15

Short form instruct ions,
V mode, 8-1

Short form instructions, I mode,
9-1

S h o r t c a l l , 1 - 2

SHORTCALL mechanism, external
subroutine, 12-15 to 12-20

SHR1 (I), 9-15

SHR2 (I), 9-15

SKP (V), 8-13

SL1 (I), 9-15

SL2 (I), 9-15

SLE (V), 8-13

SLN (V), 8-13

X-17 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

SLZ (V), 8-13

SMCR (V), 8-31

SMCS (V), 8-31

SMI (V), 8-13

SNZ (V), 8-13

SPL (V), 8-13

SRI (I) , 9-15

SR2 (I) , 9-15

SRC (V), 8-13

SSC (V), 8-13

SSM (I) , 9-13

SSM (V), 8-10

SSP (I) , 9-13

SSP (V), 8-10

SSSN (I) , 9-33

SSSN (V), 8-31

ST (I), 9-22

STA (V) , 8-20

STAC (V), 8-20

Stack frame, 4-11, 5-2
(See also ECB pseudo-operation)

STAR (I), 9-22

Statement,
machine instruction, 3-2, 3-16
macro call, 3-2
macro definition, 3-2
pseudo-operation, 3-2
syntax, 3-3
types of, 3-2

Statement elements,
constants, 3-4
symbols, 3-4

Statement field,
comment, 3-3
label , 3-3
operand, 3-3
operation, 3-3

Statement lines, 3-1

STC (I), 9-32

STC (V), 8-30

STCD (I), 9-22

STCH (I), 9-22

STEX (I), 9-33

STEX (V), 8-31

STFA (I), 9-32

STFA (V), 8-29

STH (I), 9-22

STL (V), 8-20

STLC (V), 8-20

STLR (V), 8-20

STPM (I), 9-34

STPM (V), 8-33

Structure of a program, 3-17

STTM (I), 9-33

STTM (V), 8-31

STX (V), 8-20

STY (V), 8-20

SUB (V), 8-23

SUBR pseudo-operation, 6-7

Subroutine, (See also external
subroutine; local subroutine)

entrypoint, 12-10, 12-14
external, 12-1, 12-7 to 12-14

Second Edition X-18

INDEX

Subroutine (cont inued)
ex te rna l ca l l , 12 -7
local, 12-1 to 12-5
local call in I mode, 12-5,

12-6
local call in V mode, 12-2 to

12-5
t ransfer r ing cont ro l to (See

CALL pseudo-operation; ECB
pseudo-opera t ion)

SVC (I), 9-33

SVC (V), 8-31

Symbol table,
in condit ional assembly, 4-6,

4-9, 4-10

Symbol table, assembler, 1-1,
2 -1

Symbology,
assemble r l i s t ing , 2 -6
cross re ference l i s t ing , 2-7

Symbols,
characters al lowed in, 3-4

SYML pseudo-operation, 6-7

Syntax, statement, 3-3

SZE (V), 8-13

TAB (V), 8-9

TAK (V), 8-9, 8-10

TAX (V), 8-9

TAY (V), 8-9

TBA (V), 8-9

TC (I), 9-12

TCA (V), 8-10

TCH (I), 9-12

TCL (V), 8-10

TCNP (IX), 10-4

Term,
d e fi n i t i o n o f , 3 - 5
determining the mode of, 3-6,

3-7
examples of, 3-5
mode of, 3-6
value of , 3-5

TFLL (V), 8-2 9

TFLR (I), 9-32

TKA (V), 8-9, 8-10

TLFL (V), 8-29

TM (I), 9-23

TMH (I), 9-23

Transferr ing contro l to
subroutines (See CALL
pseudo-operation; ECB
pseudo-opera t ion)

TRFL (I), 9-32

TSTQ (I), 9-33

TSTQ (V), 8-31

TXA (V), 8-9

TYA (V), 8-9

U

Unimplemented instruction package
(See DUII pseudo-operation;
LIR pseudo-operation)

V

V addressing mode, 8-1 to 8-33

X-19 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

V mode machine instructions, 8-1
to 8-33

Value table,
in condit ional assembly, 4-6,

4-9, 4-10

VFD pseudo-operation, 5-10

VPSD debugger,
description, 14-2 to 14-13
input /ou tput fo rmats , 14-4
subcommand line format, 14-3

VPSD subcommands,
ACCESS, 14-6
BREAKPOINT, 14-6
BREGISTER, 14-8
COPY, 14-8
DUMP, 14-8
EFFECTIVE, 14-9
EXECUTE, 14-9
FA, 14-9
F ILL , 14 -9
FL, 14-10
KEYS, 14-10
LIST, 14-10
LR, 14-10
MODE, 14-10
NOT-EQUAL, 14-10
OPEN, 14-11
PRINT, 14-11
PROCEED, 14-11
QUIT, 14-11
RELOCATE, 14-11
RUN, 14-11
SB, 14-12
SEARCH, 14-12
SN, 14-12
UPDATE, 14-12
VERSION, 14-12
WHERE, 14-12
XB, 14-13
XREGISTER, 14-13
YREGISTER, 14-13
ZERO, 14-13

VPSD, debugging with, 14-2 to
14-13

WAIT (I), 9-34

WAIT (V) , 8-33

X (I), 9-22

XAC pseudo-operation, 5-4

XAD (I), 9-27

XAD (V), 8-25

XBTD (I), 9-27

XBTD (V), 8-25

XCA (V) , 8-9

XCB (V), 8-9

XCM (I), 9-27

XCM (V), 8-25

XDTB (I), 9-27

XDTB (V), 8-25

XDV (I), 9-27

XDV (V), 8-25

XEC (V), 8-31

XED (I), 9-27

XED (V), 8-25

XH (I), 9-22

XMP (I), 9-27

XMP (V), 8-25

XMV (I), 9-27

XMV (V), 8-25

Second Edition X-20

INDEX

r

r

XSET pseudo-operation, 4-13

Z

ZCM (I), 9-32

ZCM (V), 8-30

ZED (I), 9-32

ZED (V), 8-30

ZFIL (I), 9-32

ZFIL (V), 8-30

ZM (I), 9-25

ZMH (I), 9-25

ZMV (I), 9-32

ZMV (V), 8-30

ZMVD (I), 9-32

ZMVD (V), 8-30

ZTRN (I), 9-32

ZTRN (V), 8-30

X - 2 1 S e c o n d E d i t i o n

For your convenience in locating subjects in the three volumes listed
below, a composite index is presented on the following pages. Each
entry includes one or more two-letter codes indicating the volume or
volumes in which the subject is discussed. Each code is followed by
one or more chapter-page references. Thus, the entry

BDY (V), AL: 8-15; IS: 2-16

indicates that information on the V-mode BDY instruction can be found
on page 8-15 of the Assembly Language Programmer's Guide and on page
2-16 of the Instruction Sets Guide.

Key to Master Index:

A b b r e v i a t i o n D o c u m e n t T i t l e D o c u m e n t N u m b e r

AL Assembly Language Programmer's Guide DOC3059-2LA

I S I n s t r u c t i o n S e t s G u i d e D O C 9 4 7 4 - 2 L A

SA System Arch i tec ture Reference Guide DOC9473-2LA

Composite Index

A

A (I), AL: 9-25; IS: 3-7

A1A (V), AL: 8-9; IS: 2-7

A2A (V), AL: 8-9; IS: 2-7

ABQ (I), AL: 9-33; IS: 3-7

ABQ (V), AL: 8-31; IS: 2-7

ACA (V), AL: 8-10; IS: 2-8

Access rights,
for segments, SA: 4-16
gate access, SA: 8-7
validation during memory

access, SA: 4-21
values and their meanings, SA:

4-22

ACP (IX), AL: 10-4; IS: 3-8

ADD (V), AL: 8-23; IS: 2-8

Address,
effective, AL: 8-1, 9-1
I mode direct, AL: 9-3
I mode indexed, AL: 9-3
I mode indirect, AL: 9-3

Address (continued)
I mode indirect indexed, AL:

9-4
V mode direct, AL: 8-2
V mode indexed, AL: 8-3
V mode indirect, AL: 8-3
V mode indirect indexed, AL:

8-4
virtual, AL: 8-1, 9-1

Address constant, AL: 5-2

Address format,
general register relative, AL:

1-2, 9-6
immediate, AL: 1-2, 9-8
register to register, AL: 1-2,

9-7

Address formation,
DMx, SA: 11-21

Address manipulation
instructions, SA: 6-9

Address translation,
details of operation, SA: 4-26
mechanism, SA: 4-2 6
STLB, SA: 1-4
timing information, SA: 4-24

CX-1 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Address traps,
32R mode, SA: 3-24
64R mode, SA: 3-27
64V mode, SA: 3-16
action for 64V mode short, SA:

3-33, B-7
discussion, SA: 3-31
register fi le correspondence,

SA: 3-34

Address ing ,
address formation, SA: 3-8
components of virtual address,

SA: 3-2
direct, SA: 3-8
discussion, SA: 3-1, B-6
genera l reg is ter re la t ive, AL:

9-6
GRR, SA: 3-10
immediate, AL: 9-8
indexed, SA: 3-8
ind i rec t , SA: 3 -8
indirect indexed, SA: 3-10
ins t ruc t ions , SA: 6 -9
modes, SA: 3-10
regis ter fi le , SA: 9-21
register to register, AL: 9-7
traps (See Address traps)
units of information, SA: 3-1

Addressing mode,
changing within a program,

(See also D32I
pseudo-operation; D64V
pseudo-opera t ion)

discussion, SA: 3-10
I, AL: 9-1 to 9-34
IX, AL: 1-2, 10-1 to 10-4
matching program and loader

(See ELM pseudo-operation)
mnemonics table, SA: 3-13
summary table, SA: 3-14
V, AL: 8-1 to 8-33

ADL (V), AL: 8-23; IS: 2-9

ADLL (V), AL: 8-10; IS: 2-9

ADLR (I), AL: 9-13; IS: 3-8

AH (I), AL: 9-25; IS: 3-9

AIP (IX), AL: 10-2; IS: 3-9

Air flow sensor, SA: 10-18

ALFA (V), AL: 8-29; IS: 2-10

Al ignment ,
burst-mode DMA, SA: 11-18
burst-mode DMT, SA: 11-20
DMC control word, SA: 11-19
ECB in gate segments, SA: 8-7
PCB, SA: 9-2, C-3
QCB address, SA: 11-21
QCBs, SA: 6-42
queues, SA: 6-43

ALL (V), AL: 8-12; IS: 2-10

ALR (V), AL: 8-12; IS: 2-11

ALS (V), AL: 8-12; IS: 2-11

ANA (V), AL: 8-20; IS: 2-11

ANL (V), AL: 8-20; IS: 2-12

AP pseudo-operation, AL: 5-2

A r c h i t e c t u r e ,
dual-stream, SA: B-3
Prime 6350, SA: 1-10
single-st ream, SA: 1-2

ARFA (I), AL: 9-32; IS: 3-10

ARGT (I), AL: 9-33; IS: 3-10

ARGT (V), AL: 8-31; IS: 2-12

Argument pointers,
calculat ing and stor ing, SA:

8-12
discussion, SA: 8-6

Argument templates,
discussion, SA: 8-6, 8-11
format, SA: 8-6

Arguments, passing (See ECB
pseudo-opera t ion)

Arithmetic logic unit, SA: 1-5

Ari thmetic overflow, SA: 5-9

Second Edition CX-2

COMPOSITE INDEX

Ar i thmet i c ove rflow ins t ruc t i ons ,
SA: 5-9

A r i t h m e t i c s h i f t i n s t r u c t i o n s ,
SA: 6-14

ARL (V), AL: 8-12

ARR (V), AL: 8-12

ARS (V), AL: 8-12

IS: 2-12

IS: 2-13

IS: 2-13

Assembler,
a t t r ibutes, AL: 1-1 , 11-3
at t r ibu tes , l i s t o f , AL: 11-10
command line options, AL: 2-2
cross reference table, AL: 2-4
escape character, AL: 3-3
file naming conventions, AL:

2 -3
file usage, AL: 2-3
invoking, AL: 2-1
l is t ing format, AL: 2-4
l ist ing symbology, AL: 2-6
messages, AL: 2-4
output fi le concatenat ion, AL:

2 -4
symbol table, AL: 1-1, 2-1

A s t e r i s k ,
in operand field, AL: 3-10
use in DAC pseudo-operation,

AL: 5-3

ATQ (I), AL: 9-33; IS: 3-11

ATQ (V), AL: 8-31; IS: 2-13

Att r ibutes, assembler, AL: 1-1,
11-3

l ist of, AL: 11-10

Auxiliary base (XB),
alteration by PCL, SA: 8-15
base register field, SA: 3-7
ind i rec t po in te r ca l cu la t i on ,

SA: 8-11
in t roduct ion , SA: 3 -4

Backward threaded stack frames,
SA: 8-3

Base registers,
discussion, SA: 3-3, 3-7
format, SA: 3-3
ins t ruc t ions , SA: 6 -9
re la t ionsh ip to o f fse ts , SA:

3-4

Battery backup capabi l i ty, SA:
1-10

BCEQ (I), AL: 9-17

BCEQ (V), AL: 8-15

BCGE (I), AL: 9-17

BCGE (V), AL: 8-15

BCGT (I), AL: 9-17

BCGT (V), AL: 8-15

IS: 3-12

IS: 2-14

IS: 3-12

IS: 2-14

IS: 3-12

IS: 2-14

BACK pseudo-operation, AL: 4-5

BCI pseudo-operation, AL: 5-5

BCLE (I), AL: 9-17; IS: 3-12

BCLE (V), AL: 8-15; IS: 2-14

BCLT (I), AL: 9-17; IS: 3-13

BCLT (V), AL: 8-15; IS: 2-15

BCNE (I), AL: 9-17; IS: 3-13

BCNE (V), AL: 8-15; IS: 2-15

BCR (I), AL: 9-18; IS: 3-13

BCR (V), AL: 8-15; IS: 2-15

BCS (I), AL: 9-18; IS: 3-13

BCS (V), AL: 8-15; IS: 2-15

BCZ pseudo-operation, AL: 5-5

BDX (V), AL: 8-15; IS: 2-16

BDY (V), AL: 8-15; IS: 2-16

Beat rate, SA: 1-7

CX-3 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Beginning of list, SA: 9-5

BEQ (V), AL: 8-14; IS: 2-16

BES pseudo-operation, AL: 5-13

BHLT (I), AL: 9-17; IS: 3-11

BHNE (I), AL: 9-17; IS: 3-11

Binary numbers, SA: 6-3, 6-4

BFEQ (I) , AL: 9-17; IS : 3-14 BIND l i n k e r , AL: 13 - 3

BFEQ (V), AL: 8-15; IS : 2-16 Bi t man ipu la t ion ins t ruc t ions ,
SA: 6--2

BFGE (I) , AL: 9-17; IS : 3-14
B i t s ,, SA 3-1

BFGE (V), AL: 8-15; IS : 2-17
BIX (V), AL: 8 -15 ; IS : 2-19

BFGT (I) , AL: 9-17; IS : 3-14
BIY (V), AL: 8 -15 ; I S : 2 -19

BFGT (V), AL: 8-15; IS : 2-17
BLE (V), AL: 8 -14 ; I S : 2 -19

BFLE (I) , AL: 9-17; IS : 3-14
BLEQ (V) , AL: 8 -14 ; IS : 2-20

BFLE (V),, AL: 8-15; IS : 2-17
BLGE (V) , AL: 8 -14 ; IS: 2-20

BFLT (I) , AL: 9-17; IS : 3-14
BLGT (V), AL: 8-14; IS 2-20

BFLT (V) P AL: 8-15; IS : 2-18
BLLE (V), AL: 8 -14 ; IS: 2-20

BFNE (I) r AL: 9 -17 ; IS : 3-14
BLLT (V), AL: 8-14; IS: 2-21

BFNE (V) r AL: 8-15; IS : 2-18
BLNE (V), AL: 8 -14 ; IS 2-21

BGE (V), AL: 8-14; IS : 2-18
BLR (I) , AL: 9-18; IS : 3-19

BGT (V), AL: 8 -14 ; IS : 2-19
BLR (V), AL: 8-15; IS : 2-21

BHD1 (I) T AL: 9-18; IS : 3-16
BLS (I) , AL: 9 -18 ; IS : 3-19

BHD2 (I) , AL: 9-18; IS : 3-16
BLS (V), AL: 8 -15 ; IS : 2-21

BHD4 (I) , AL: 9-18; IS : 3-16
BLT (V), AL: 8 -14 ; IS : 2-22

BHEQ (I) r AL: 9-17; IS : 3-16
BMEQ (I) , AL 9-17; IS 3-19

BHGE (I) r AL: 9-17; IS : 3-17
BMEQ (V), AL 8-15 ; IS 2-22

BHGT (I) , A L : 9-17; IS : 3-17
BMGE (I) , AL 9-17; IS 3-19

BHI1 (I) , AL: 9-18; IS : 3-17
BMGE (V), AL 8-15 ; IS . 2-22

BHI2 (I) , AL: 9-18; IS : 3-17
BMGT (I) , AL 9-17; I S : 3-20

BHI4 (I) , AL: 9-18; IS : 3-18
BMGT (V), AL 8-15; IS : 2-23

BHLE (I) , AL: 9-17; IS : 3-18
BMLE (I) , AL : 9-17; IS : 3-20

Second Edition CX-4

COMPOSITE INDEX

BMLE (V), AL: 8-15; IS: 2-23

BMLT (I), AL: 9-17; IS: 3-20

BMLT (V), AL: 8-15; IS: 2-23

BMNE (I), AL: 9-17; IS: 3-20

BMNE (V), AL: 8-15; IS: 2-23

BNE (V), AL: 8-14; IS: 2-24

Boolean operations, SA: 6-2

Branch cache, SA: 1-9, 10-39

Branch instructions, SA: 7-1
I mode, AL: 9-16 to 9-18
V mode, AL: 8-14, 8-15

BRBR (I), AL: 9-17

BRBS (I), AL: 9-17

BRD1 (I), AL: 9-18

BRD2 (I), AL: 9-18

BRD4 (I), AL: 9-18

IS: 3-21

IS: 3-21

IS: 3-21

IS: 3-22

IS: 3-22

Breaks,
discussion, SA: 10-1
summary of, SA: 10-2

BREQ (I)

BRGE (I)

BRGT (I)

BRIl (I)

BRI2 (I)

BRI4 (I)

BRLE (I)

BRLT (I)

BRNE (I)

AL: 9-17

AL: 9-17

AL: 9-17

AL: 9-18

AL: 9-18

AL: 9-18

AL: 9-17

AL: 9-17

AL: 9-17

IS: 3-22

IS: 3-22

IS: 3-23

IS: 3-23

IS: 3-23

IS: 3-23

IS: 3-24

IS: 3-24

IS: 3-24

BSZ pseudo-operation, AL: 5-13

Buffer space allocation, AL:
5-12

Burst-mode DMA, SA: 11-18

Burst-mode DMT, SA: 11-20

Bytes, SA: 3-1

BSS pseudo-operation, AL: 5-13

C (I), AL: 9-23; IS: 3-25

C language character pointer,
SA: 3-4, 3-11, 3-20

C language pointer, AL: 1-2

C language related instructions,
AL: 10-3

Cabinet overtemperature sensor,
SA: 10-18

Cache memory,
access details, SA: 4-22
branch cache, SA: 1-9
details of access, SA: 4-19,

B-10
discussion, SA: 1-2, 1-10,

2-3, 4-14
entry format, SA: 4-14, B-10
inhibiting use of, SA: 4-17,

4-18
introduction, SA: 1-2, B-2
invalidation by stream

synchronization unit, SA:
B-3

invalidation via IOTLB, SA:
11-15, B-28

sizes and hit rates, SA: 2-3,
B-5

use during address conversion,
SA: 4-2

virtual mapping, SA: 4-22

CAL (V), AL: 8-10; IS: 2-25

CALF (I), AL: 9-33; IS: 3-25

CX-5 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

CALF (V), AL: 8-31; IS: 2-25

CALL pseudo-operation, AL: 6-4,
12-7

Called procedure, SA: 8-2

Callee, SA: 8-2

Caller, SA: 8-2

Calling procedure, SA: 8-2

Calls, SA: 8-1

CAR (V), AL: 8-10; IS: 2-25

CAS (V), AL: 8-21; IS: 2-25

CAZ (V), AL: 8-13; IS: 2-26

CBIT, SA: 5-9

CCP (IX), AL: 10-4; IS: 3-25

CEA, IS: 2-2 6

CENT pseudo-operation, AL: 6-2

CGT (I), AL: 9-18; IS: 3-26

CGT (V), AL: 8-16; IS: 2-26

CH (I), AL: 9-23; IS: 3-26

Character and field instructions,
I mode, AL: 9-32
V mode, AL: 8-30

Character and field operations,
AL: 8-28, 9-29

Character manipulation,
examples, SA: 6-39
field operation instructions,

SA: 6-17
instructions, SA: 6-38

Character strings,
as floating-point numbers, SA:

6-26
instructions, SA: 6-38
manipulation of, SA: 6-39

Checks,
diagnostic status words, SA:

10-21
discussion, SA: 10-18
handler, SA: 10-18
handler operation, SA: 10-35
header format, SA: 10-21
MCM field, SA: 10-34
reporting modes, SA: 10-35
traps, SA: 10-36
traps produced by checks and

their actions, SA: 10-37,
B-2 6

types of, SA: 10-18, 10-36
vectors, SA: 10-21

Checksum instructions, SA: 6-2

CHS (I), AL: 9-13; IS: 3-27

CHS (V), AL: 8-10; IS: 2-27

Clear register/memory
instructions, SA: 6-16

CLS (V), AL: 8-21; IS: 2-27

CMA (V), AL: 8-10; IS: 2-27

CMH (I), AL: 9-12; IS: 3-27

CMR (I), AL: 9-12; IS: 3-27

COMM pseudo-operation, AL: 5-13

Command line options, assembler,
AL: 2-2

Comment field, AL: 3-3
function of, AL: 3-13

Comment lines, AL: 3-1

COMMON, FORTRAN-compatible, AL:
5-13

Components of an instruction,
SA: 3-5

Computed go to instruction,
I mode, AL: 9-18
V mode, AL: 8-16

Second Edition CX-6

COMPOSITE INDEX

Concatenation, assembler output
fi l e , A L : 2 - 4

Concealed stack, SA: 10-10

Concurrency control ,
Prime 850 locks, SA: B-3, B-5

Condition codes, SA: 5-9

Constants,
address, AL: 5-2
character, AL: 5-6
decimal, AL: 5-9
fixed point, AL: 5-8
float ing po in t , AL: 5-9
hexadecimal, AL: 5-9
integer, AL: 5-7
octal, AL: 5-10
scaling of, AL: 5-8
types of, AL: 3-4
v a r i a b l e fi e l d d e fi n i t i o n , A L :

5-10

Continuat ion l ine, AL: 3-3

Control store, SA: 1-4, B-2

Control word format for decimal
ins t ruc t ions , SA: 6 -34

C o n t r o l l e r ,
address, SA: 11-4
discussion, SA: 11-1
relat ionship to processor, SA:

11-1

Contro l ler address field, SA:
11-4

CPUNUM, SA: C-3

CR (I), AL: 9-12; IS: 3-27

CRA (V), AL: 8-9; IS: 2-28

CRB (V), AL: 8-9; IS: 2-28

CRBL (I), AL: 9-12; IS: 3-27

CRBR (I), AL: 9-12; IS: 3-27

CRE (V), AL: 8-9; IS: 2-28

CRHL (I), AL: 9-12; IS: 3-28

CRHR (I), AL: 9-12; IS: 3-28

CRL (V), AL: 8-9; IS: 2-28

CRLE (V), AL: 8-9; IS: 2-28

Cross reference l is t ing
symbology, AL: 2-7

Cross reference table, assembler,
AL: 2-4

CSA (V), AL: 8-10; IS: 2-29

CSR (I), AL: 9-13; IS: 3-28

D (I), AL: 9-25; IS: 3-29

D32I pseudo-operation, AL: 6-3

D64V pseudo-operation, AL: 6-2

DAC pseudo-operation, AL: 5-2
asterisks in operand of, AL:

5 -3
for return address storage,

AL: 5-3

DAD, IS: 2-30

Data movement instructions, SA:
6-10

DATA pseudo-operation, AL: 5-6

Datatypes,
discussion, SA: 6-1
summary with applicable I mode

ins t ruc t ions , SA: 6 -49
summary with applicable R mode

ins t ruc t ions , SA: 6 -47
summary with applicable S mode

ins t ruc t ions , SA: 6 -47
summary with applicable V mode

ins t ruc t ions , SA: 6 -47

DBL, IS: 2-30

CX-7 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

DBLE (I), AL: 9-28; IS: 3-29

DCP (IX), AL: 10-4; IS: 3-29

Debugging,
program invocation for IPSD,

AL: 14-14
program invocation for VPSD,

AL: 14-2
using IPSD, AL: 14-14
using VPSD, AL: 14-2

Debugging an assembled program,
AL: 14-2

DEC pseudo-operation, AL: 5-9

Decimal arithmetic instructions,
I mode, AL: 9-25 to 9-27
V mode, AL: 8-23

Decimal conversion and editing
ins t ruc t i ons ,

I mode, AL: 9-26, 9-27
V mode, AL: 8-23

Decimal data,
accuracy, SA: 6-36
control word format, SA: 6-34
packed, SA: 6-33
precision, SA: 6-36
register use, SA: 6-36
sign/digit representations for

unpacked, SA: 6-33
types, SA: 6-35
unpacked, SA: 6-32

Descriptor Table Address
Register, SA: 4-15, 4-29

DFA (I), AL: 9-29; IS: 3-30

DFAD (V), AL: 8-27; IS: 2-31

DFC (I), AL: 9-28; IS: 3-30

DFCM (I), AL: 9-28; IS: 3-31

DFCM (V), AL: 8-26; IS: 2-31

DFCS (V), AL: 8-26; IS: 2-32

DFD (I), AL: 9-29; IS: 3-31

DFDV (V), AL: 8-27; IS: 2-32

DFL (I), AL: 9-28; IS: 3-32

DFLD (V), AL: 8-2 6; IS: 2-33

DFLX (V), AL: 8-27; IS: 2-33

DFM (I), AL: 9-29; IS: 3-32

DFMP (V), AL: 8-27; IS: 2-33

DFS (I), AL: 9-29; IS: 3-32

DFSB (V), AL: 8-27; IS: 2-34

DFST (I), AL: 9-28; IS: 3-33

DFST (V), AL: 8-26; IS: 2-34

DFTB pseudo-operation, AL: 4-6

DFVT pseudo-operation, AL: 4-6

DH (I), AL: 9-25; IS: 3-33

DH1 (I), AL: 9-12; IS: 3-34

DH2 (I), AL: 9-12; IS: 3-34

Diagnostic status words,
list of, SA: 10-21
setting by multiple checks,

SA: 10-35
value after checks, SA: 10-34

Direct addressing, SA: 3-8

Direct memory access (See DMA)

Direct memory access methods
(See DMx)

Direct memory control, SA: 11-19

Direct memory queue, SA: 6-41,
6-45, 11-21

Direct memory transfer, SA:
11-20

Dispatcher,
discussion, SA: 9-16
operation, SA: 9-27, B-18

Second Edition CX-8

COMPOSITE INDEX

Dispatcher (cont inued)
operation on Prime 850, SA:

C - l l

Displacement, SA: 3-4, 3-7

DIV (V), AL: 8-23; IS: 2-35

DLD, IS: 2-36

DM (I), AL: 9-25; IS: 3-34

DMA,
burst-mode, SA: 11-18
discussion, SA: 11-16
extended, SA: 11-19
reg is ter fi le , SA: 9-21
servicing a request, SA: 11-17

DMC, SA: 11-19

DMH (I), AL: 9-25; IS: 3-35

DMQ, SA: 11-21
physical queues, SA: 6-41
queue operations, SA: 6-45

DMT, SA: 11-20
burst-mode, SA: 11-20

DMx,
address formation, SA: 11-21
discussion, SA: 11-10
DMA, SA: 11-16
DMC, SA: 11-19
DMQ, SA: 11-21
DMT, SA: 11-20
IOTLB, SA: 11-14
mapped I/O, SA: 11-13, B-27
transfer rates, SA: 11-12

Doub le p rec is ion floa t ing-po in t ,
SA: 6-19

DR1 (I), AL: 9-12

DR2 (I), AL: 9-12

DRN (I), AL: 9-29

DRN (V), AL: 8-27

IS: 3-35

IS: 3-35

IS: 3-35

IS: 2-36

DRNM (I), AL: 9-29; IS: 3-36

DRNM (V), AL: 8-27; IS: 2-37

DRNP (I), AL: 9-29; IS: 3-36

DRNP (V), AL: 8-27; IS: 2-37

DRNZ (I), AL: 9-29; IS: 3-37

DRNZ (V), AL: 8-27; IS: 2-38

DRX (V), AL: 8-13; IS: 2-38

DSB, IS: 2-38

DST, IS: 2-39

DSWPARITY,
format for Prime 2350 to 2755,

SA: 10-29
format for Prime 6350, SA:

10-22
format for Prime 750, SA: B-23
format for Prime 850, SA: B-23
format for Prime 9650 and 9655,

SA: 10-29
format for Prime 9750 to 9955

II, SA: 10-26

DSWPARITY2,
format for Prime 6350, SA:

10-24

DSWPB, SA: 10-34

DSWRMA, SA: 10-33

DSWSTAT,
discussion, SA: 10-36
format for earl ier processors,

SA: B-25
format for Prime 2350 to 2755,

SA: 10-32
format for Prime 6350, SA:

10-30
format for Prime 9650 and 9655,

SA: 10-32
format for Prime 9750 to 9955

II, SA: 10-31

DTAR,
discussion, SA: 4-15
format, SA: 4-15
use during address translation,

SA: 4-29

CX-9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Dual -s t ream arch i tecture, SA:
B-3

DUII pseudo-operation, AL: 6-3

DVL (V), AL: 8-23; IS: 2-40

Dynamic storage, AL: 4-12

DYNM pseudo-operation, AL: 4-11

DYNT pseudo-operation, AL: 6-4

E

E16S (I)

E16S (V)

E32I (I)

E32I (V)

E32R (I)

E32R (V)

E32S (I)

E32S (V)

E64R (I)

E64R (V)

E64V (I)

E64V (V)

EAA, IS

EAFA (I)

EAFA (V)

EAL (V),

EALB (I)

EALB (V)

EAR (I),

AL: 9-33

AL: 8-30

AL: 9-33

AL: 8-30

AL: 9-33

AL: 8-30

AL: 9-33

AL: 8-30

AL: 9-33

AL: 8-30

AL: 9-33

AL: 8-30

2-42

AL: 9-32;

AL: 8-2 9;

AL: 8-20;

AL: 9-21;

AL: 8-20;

AL: 9-21;

IS: 3-38

IS: 2-41

IS: 3-38

IS: 2-41

IS: 3-38

IS: 2-41

IS: 3-38

IS: 2-41

IS: 3-38

IS: 2-41

IS: 3-39

IS: 2-42

IS: 3-39

IS: 2-42

IS: 2-42

IS: 3-39

IS: 2-43

IS: 3-40

Ear l ie r processors ,
address translat ion, SA: 4-26,

B - l l
address trap action, SA: 3-31,

B-7
addressing, SA: 3-1, B-6
a l ter ing sequent ia l flow, SA:

7-1, B-16
breaks, SA: 10-1, B-19
cache, SA: B-2
cache access, SA: 4-19, B-10
cache entry format, SA: B-10
cache sizes and hit rates, SA:

B-5
checks, SA: 10-18, B-22
control store, SA: B-2
datatypes, SA: 6-1, B- l l
d ispatcher operat ion, SA:

9-25, B-18
DMA register file, SA: 9-21,

B-18
DSWPARITY, SA: B-23
DSWPB, SA: 10-34, B-22
DSWRMA, SA: 10-33, B-22
DSWSTAT, SA: B-25
DTAR, SA: 4-15, B-10
dua l -s t ream arch i tec tu re , SA:

B-3
execution unit, SA: 1-5, B-2
faults, SA: 10-6, B-22
fl o a t i n g - p o i n t , S A : 6 - 1 9 , B - l l
HMAP, SA: 4-18, B-10
input/output, SA: 11-1, B-27
instruct ion stream uni ts, SA:

B-3
inst ruct ion uni t , SA: B-2
interrupts, SA: 10-3, B-19
interval clock, SA: B-27
IOTLB, SA: B-27
keys, SA: 5-4, B-ll
l ist of, SA: 1-1, B-l
memory management, SA: 4-1,

B-8
microcode, SA: B-2
microcode reg is ter fi les, SA:

B-18
modals, SA: 5-2, B-ll
nonindexing 64V mode

ins t ruc t ions , SA: B-6
physical and virtual memory,

SA: 2-1, B-5
procedure calls, SA: 8-1, B-17
process exchange, SA: 9-1,

B-17

Second Edition CX-10

COMPOSITE INDEX

Earl ier processors (cont inued)
process exchange on Prime 850,

SA: C-l
process interval t imer, SA:

9-25, B-18
regis ter fi les, SA: B-17
r e s t r i c t e d i n s t r u c t i o n s , S A :

5-11 , B- l l
SDT and SDW, SA: 4-16, B-10
s ing le -s t ream a rch i t ec tu re ,

SA: 1-2, B-2
stacks, SA: 8-1, B-17
STLB, SA: B-2
STLB access, SA: 4-19, B-10
STLB entry format, SA: B-8
STLB hashing algorithm, SA:

B-9
stream synchronization units,

SA: B-3
system overview, SA: 1-1, B-2
traps, SA: 10-37, B-26
user register files, SA: 9-19,

B-18

EAXB (I), AL: 9-21; IS: 3-40

EAXB (V), AL: 8-20; IS: 2-43

ECB,
CALF instruction, SA: 10-13
discussion, SA: 8-5
format, SA: 8-5
gate segments, SA: 8-7
ring numbers, SA: 8-7
stack al location, SA: 8-10

ECB pseudo-operation, AL: 6-5,
12-14

ECL, SA: 1-10

Effect ive address ca lcu la t ion
ins t ruc t ions , SA: 6 -9

EIO (I), AL: 9-34; IS: 3-40

EIO (V), AL: 8-32; IS: 2-43

EJCT pseudo-operation, AL: 4-15

ELM pseudo-operation, AL: 6-3

ELSE pseudo-operation, AL: 4-7

Embedded operating system, SA:
8-1

Emitter coupled logic, SA: 1-10

ENB (I), AL: 9-34; IS: 3-41

ENB (V), AL: 8-32; IS: 2-43

ENBL (I), AL: 9-34; IS: 3-41

ENBL (V), AL: 8-32; IS: 2-44

ENBM (I), AL: 9-34; IS: 3-41

ENBM (V), AL: 8-32; IS: 2-44

ENBP (I), AL: 9-34; IS: 3-42

ENBP (V), AL: 8-32; IS: 2-44

End of list, SA: 9-5

END pseudo-operation, AL: 4-2

ENDC pseudo-operation, AL: 4-7

ENDM pseudo-operation, AL: 7-3,
11-2

ENT pseudo-operation, AL: 6-7,
12-14

Entry control block (See ECB)

Environment sensor support,
check, SA: 10-18
discussion, SA: 10-18

Environmental checks, SA: 10-18

EQU pseudo-operation, AL: 4-13

Equal sign in operand field, AL:
3 -11

ERA (V), AL: 8-20; IS: 2-45

ERL (V), AL: 8-20; IS: 2-45

Escape character, AL: 3-3

Excess 128, SA: 6-19

CX-11 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Executing an assembled program,
AL: 14-1

Execution unit, SA: B-2
discussion, SA: 1-5
in t roduct ion, SA: 1-5
p o w e r - u p i n i t i a l i z a t i o n , S A :

A-1
re lat ionship to I /O contro l ler,

SA: 11-1

Exponent, SA: 6-19

Expression operators,
a r i thmet ic , AL : 3 -8
log ica l , AL: 3 -8
pr ior i ty o f , AL: 3-9
re la t i ona l , AL : 3 -8
sh i f t , AL : 3 -9

Express ions,
conventions used in, AL: 3-9
defin i t ion o f , AL: 3-7
resultant mode of, AL: 3-10
signs in, AL: 3-9
spaces in, AL: 3-9

EXT pseudo-operation, AL: 6-6,
12-7

Extended character set (See
Prime ECS)

Extended DMA, SA: 11-19

Extension segments, SA: 8-2

External subroutine, AL: 12-1,
12-7 to 12-14

argument passing to, AL: 12-14
CALL pseudo-operation, AL:

12-7
entrypoint to, AL: 12-8
PCL vs. CALL mechanism, AL:

12-8 to 12-14
PRTN return from, AL: 12-14
returning from, AL: 12-14
role of ECB in, AL: 12-14
SHORTCALL mechanism, AL: 12-15

to 12-20

FA (I), AL: 9-29; IS: 3-43

FAD (V), AL: 8-27; IS: 2-46

FADDR, SA: 10-16

FAIL pseudo-operation, AL: 4-7

FAR (See Field address register)

Fault address, SA: 10-13

Fault bit, SA: 4-16

Fault code, SA: 10-13

F a u l t s ,
access, SA: 4-22, 8-7
ar i thmet ic except ions, SA:

10-16, B-22
CALF instruction, SA: 10-10
classes, SA: 10-6
classes summary, SA: 10-15
concealed stack, SA: 10-10
decimal, SA: 5-6
discussion, SA: 10-6
fl o a t i n g - p o i n t , S A : 5 - 6
handler, SA: 10-7
integer, SA: 5-6
omitted argument pointer, SA:

8-14
page, SA: 4-29
PCB, SA: 9-3
pointer, SA: 3-9, 8-11, 8-14
process, SA: 9-27, C-l l
SDW, SA: 4-16
semaphore overflow, SA: 9-9,

9-13, 10-6, 10-9, 10-15
servic ing, SA: 10-12
stack overflow, SA: 8-3, 8-10
summary of, SA: 10-6
tables, SA: 10-8
vectors, SA: 10-7

FC (I), AL: 9-28; IS: 3-43

FCDQ (I), AL: 9-28; IS: 3-44

FCDQ (V), AL: 8-26; IS: 2-46

FCM (I), AL: 9-28; IS: 3-44

Second Edition CX-12

COMPOSITE INDEX

r

FCM (V), AL: 8-26; IS: 2-46

FCODE, SA: 10-16, B-22

FCS (V), AL: 8-26; IS: 2-47

FD (I), AL: 9-29; IS: 3-44

FDBL (V), AL: 8-26; IS: 2-47

FDV (V), AL: 8-27; IS: 2-48

Field address register,
format, SA: 6-18
ins t ruc t ions, SA: 6-17
in t roduct ion, SA: 6-17
over lap w i th floa t ing -po in t

registers, SA: 6-17, 6-21,
9-20

Fie ld length register,
format, SA: 6-18
ins t ruc t ions, SA: 6-17
in t roduct ion, SA: 6-17
over lap w i th floa t ing -po in t

registers, SA: 6-17, 6-21,
9-20

Fie ld opera t ions ins t ruc t ions ,
SA: 6-17

F ie ld reg i s te r i ns t ruc t i ons ,
I mode, AL: 9-32
V mode, AL: 8-2 9

File naming conventions,
assembler, AL: 2-3

File usage, assembler, AL: 2-3

FIN pseudo-operation, AL: 5-11

Firmware, SA: 1-4

Fixed-point data,
addresses, SA: 6-9
discussion, SA: 6-1
field operat ions, SA: 6-17
instruct ions, SA: 6-4, 6-10
logical values, SA: 6-2
signed integers, SA: 6-3

FL (I), AL: 9-28; IS: 3-45

Flag bits in CALF stack frame,
SA: 10-13

FLD (V), AL: 8-26; IS: 2-48

F loa t ing po in t i ns t ruc t ions ,
I mode, AL: 9-27
I mode accumulator, AL: 9-28
I mode arithmetic, AL: 9-2 9
I mode conversion, AL: 9-28
I mode rounding, AL: 9-2 9
V mode, AL: 8-25
V mode accumulator, AL: 8-2 6
V mode arithmetic, AL
V mode conversion, AL
V mode load index, AL

8-27
8-26
8-27

V mode rounding, AL: 8-27

Float ing-point numbers,
accumulators, SA: 6-19
accuracy, SA: 6-26, B-14
discussion, SA: 6-19
format, SA: 6-20, B-12
FORTRAN 66 considerations, SA:

6-26
ins t ruc t ions , SA: 6 -22
manipulation of, SA: 6-23
normal izat ion, SA: 6-23, 6-25,

B-12
precision, SA: 6-26, B-15
register over lap wi th field

registers, SA: 6-17, 6-21,
9-20

rounding, SA: 6-24, B-13
zero, SA: 6-23

FLOT, IS: 2-48

FLR (See Field length register)

FLT (I), AL: 9-28; IS: 3-45

FLTA (V), AL: 8-26; IS: 2-49

FLTH (I), AL: 9-28; IS: 3-45

FLTL (V), AL: 8-26; IS: 2-49

FLX (V), AL: 8-27; IS: 2-49

FM (I), AL: 9-29; IS: 3-45

FMP (V), AL: 8-27; IS: 2-49

CX-13 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

FORTRAN 66 considerations, SA:
6-26

Fraction, SA: 6-19

Free pointer, SA: 8-3

FRN (I), AL: 9-29; IS: 3-46

FRN (V), AL: 8-27; IS: 2-50

FRNM (I), AL: 9-29; IS: 3-47

FRNM (V), AL: 8-27; IS: 2-50

FRNP (I), AL: 9-29; IS: 3-47

FRNP (V), AL: 8-27; IS: 2-51

FRNZ (I), AL: 9-29; IS: 3-47

FRNZ (V), AL: 8-27; IS: 2-51

FS (I), AL: 9-29; IS: 3-48

FSB (V), AL: 8-27; IS: 2-52

FSGT (V), AL: 8-26; IS: 2-52

FSLE (V), AL: 8-26; IS: 2-52

FSMI (V), AL: 8-26; IS: 2-53

FSNZ (V), AL: 8-26; IS: 2-53

FSPL (V), AL: 8-26; IS: 2-53

FST (I), AL: 9-28; IS: 3-48

FST (V), AL: 8-26; IS: 2-53

FSZE (V), AL: 8-26; IS: 2-54

Function field, SA: 11-4

General register re lat ive (See
GRR)

General register relative address
format, AL: 1-2, 9-6

General registers,
al terat ion dur ing procedure

call , SA: 8-15

Gener i c ins t ruc t ions ,
I mode register, AL: 9-11
I mode shift, AL: 9-14
V mode accumulator, AL: 8-8
V mode shift, AL: 8-11
V mode skip, AL: 8-12

GO pseudo-operation, AL: 4-7

GRR, SA: 3-2, 3-4, 3-10, 3-11,
3-14, 3-21

(See also General register
relative address format)

GRR addressing, SA: 3-10

Guard bits, SA: 6-23, B-12

Gate access, SA: 8-7

Gate segments, SA: 8-7

Halfwords, SA: 3-1

Hardware page map table, SA:
4-18, 4-29

Hashing algorithm (See STLB:
hashing algorithm)

Header lines, AL: 3-1

HEX pseudo-operation, AL: 5-9

Hit rate, SA: 2-3

HLT (I), AL: 9-33; IS: 3-49

HLT (V), AL: 8-31; IS: 2-55

HMAP,
discussion, SA: 4-18
entry format, SA: 4-18

Second Edition CX-14

COMPOSITE INDEX

HMAP (continued)
use during address translation,

SA: 4-29

Honeywell 316 and 516, SA: 3-12

I (I), AL: 9-21; IS: 3-50

I addressing mode, AL: 9-1 to
9-34

I mode,
behavior relating to 5-stage

pipeline, SA: 1-9
discussion, SA: 3-11
performance, SA: 1-9

I mode machine instructions, AL:
9-1 to 9-34

I/O,
discussion, SA: 11-1
mapped, SA: 11-13

I/O Controller, SA: 11-1, 11-4

IAB (V), AL: 8-9; IS: 2-56

ICA (V), AL: 8-10; IS: 2-56

ICBL (I), AL: 9-12; IS: 3-50

ICBR (I), AL: 9-12; IS: 3-50

ICHL (I), AL: 9-12; IS: 3-50

ICHR (I), AL: 9-12; IS: 3-51

ICL (V), AL: 8-10; IS: 2-56

ICP (IX), AL: 10-4; IS: 3-51

ICR (V), AL: 8-10; IS: 2-56

IF pseudo-operation, AL: 4-7

IFM pseudo-operation, AL: 4-9

IFN pseudo-operation, AL: 4-9

IFP pseudo-operation, AL: 4-9

IFTF pseudo-operation, AL: 4-10

IFTT pseudo-operation, AL: 4-10

IFVF pseudo-operation, AL: 4-10

IFVT pseudo-operation, AL: 4-10

IFx pseudo-operation, AL: 4-8

IFZ pseudo-operation, AL: 4-9

IH (I), AL: 9-21; IS: 3-51

IH1 (I), AL: 9-12; IS: 3-52

IH2 (I), AL: 9-12; IS: 3-52

ILE (V), AL: 8-9; IS: 2-56

IM (I), AL: 9-25; IS: 3-52

IMA (V), AL: 8-20; IS: 2-57

IMH (I), AL: 9-25; IS: 3-53

Immediate address format, AL:
1-2, 9-8

Immediate types, SA: 3-20

Impure procedure segment, AL:
4-4

In Dispatcher bit, SA: 9-29

INA, IS: 2-57

INA action, SA: 11-9

INBC (I), AL: 9-34

INBC (V), AL: 8-32

INBN (I), AL: 9-34

INBN (V), AL: 8-32

IS: 3-53

IS: 2-57

IS: 3-53

IS: 2-58

Index register,
discussion, SA: 3-7
relationship to offsets, SA:

3-4

CX-15 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Indexed addressing, SA: 3-8

Indirect addressing,
argument templates, SA: 8-6
calculation of pointers, SA:

8-11
discussion, SA: 3-8
format, SA: 3-3, 3-4, 3-20
long form, SA: 3-9
multiple levels, SA: 3-8
pointers, SA: 3-20, 8-6
relationship to offsets, SA:

3-4
short form, SA: 3-8

Indirect bit,
16S mode, SA: 3-29
32R mode, SA: 3-24
32S mode, SA: 3-31
64R mode, SA: 3-27
discussion, SA: 3-6

Indirect indexed address, SA:
3-10

Indirect pointer related
instructions, AL: 10-1

Indirection chain,
32R mode, SA: 3-24
32S mode, SA: 3-31
discussion, SA: 3-8
involving indexing, SA: 3-10

INEC (I), AL: 9-34

INEC (V), AL: 8-32

INEN (I), AL: 9-34

INEN (V), AL: 8-32

IS: 3-54

IS: 2-58

IS: 3-54

IS: 2-59

INH (I), AL: 9-34; IS: 3-55

INH (V), AL: 8-32; IS: 2-59

INHL (I), AL: 9-34

INHL (V), AL: 8-32

INHM (I), AL: 9-34

INHM (V), AL: 8-32

IS: 3-55

IS: 2-60

IS: 3-56

IS: 2-60

INHP (I), AL: 9-34; IS: 3-56

INHP (V), AL: 8-32; IS: 2-60

INK, IS: 2-61

INK (I), AL: 9-13; IS: 3-56

Input /output ,
discussion, SA: 11-1
mapped, SA: 11-13

Instruction format,
16S mode, SA: 3-28
321 mode, SA: 3-20
32R mode, SA: 3-22
32S mode, SA: 3-30
64R mode, SA: 3-25
64V mode long and indirect,

SA: 3-17
64V mode short form, SA: 3-15
typical, SA: 3-6

Instruction set,
address manipulation, SA: 6-9
argument transfer, SA: 8-14
arithmetic overflow, SA: 5-9
bit manipulation, SA: 6-2
branches, SA: 7-1
character strings, SA: 6-38
checksum, SA: 6-2
clear register/memory, SA:

6-16
conditional store, SA: 6-13
conversion between fixed- and

floating-point, SA: 6-2 9
data movement, SA: 6-10
datatypes, SA: 6-1
deadlock prevention, SA: 6-13
decimal, SA: 6-37
decimal control word format,

SA: 6-34
effect address calculation,

SA: 6-9
EIO, SA: 11-2
fast array reference, SA: 6-9
fast decrement by one or two,

SA: 6-7
fast increment by one or two,

SA: 6-4
fast setting of bits in A, SA:

6-7
faults, SA: 10-10
fixed-point data, SA: 6-10

Second Edition CX-16

COMPOSITE INDEX

Instruct ion set (cont inued)
fl o a t i n g - p o i n t , S A : 6 - 2 2
floa t i ng -po in t accu racy, SA :

6-27
handling large integers, SA:

6-4
input /ou tpu t , SA: 11-2
input /output opera t ive ac t ions ,

SA: 11-9
interrupt handl ing, SA: 10-4
interval clock, SA: 10-47
interval timer, SA: 9-2 6
invalidating IOTLB, SA: 11-15
jumps, SA: 7-6
keys, SA: 5-8
lock implementation, SA: 6-13
logic inst ruct ions, SA: 6-2
modals, SA: 5-4
overlapping str ings, SA: 6-39
phantom interrupt, SA: 10-4
PIO, SA: 11-2
procedure call, SA: 8-2
process exchange, SA: 9-7, 9-9
process exchange on the Prime

850, SA: C-6
process timer, SA: 9-26
queues, SA: 6-45, 6-46
ready list, SA: 9-13
r e s t r i c t e d i n s t r u c t i o n s , S A :

5-11
results of comparisons, SA:

5-9
returning from procedures, SA:

8-15
semaphores, SA: 9-7, 9-9
semaphores on the Prime 850,

SA: C-6
sh i f t ins t ruc t ions , SA: 6 -14
shif ts versus rotates, SA:

6-15
signed integers, SA: 6-4
skips, SA: 7-1
special load/store, SA: 6-13
wait l ist, SA: 9-9

Ins t ruc t ion s t ream,
a l ter ing sequent ia l flow, SA:

7 -1
self-modifying code, SA: 1-9
storing data into, SA: 1-9

Instruct ion stream uni ts, SA:
B-3, C-l

Instruct ion uni t , SA: 1-2, 1-7,
B-2

I n s t r u c t i o n s ,
accumulator generic, V mode,

AL: 8-8
address translat ion, AL: 8-32
branch, I mode, AL: 9-16 to

9-18
branch, V mode, AL: 8-14, 8-15
C language related, AL: 10-3
character and field, I mode,

AL: 9-32
character and field, V mode,

AL: 8-30
decimal arithmetic, I mode,

AL: 9-25 to 9-27
decimal arithmetic, V mode,

AL: 8-23 to 8-25
decimal conversion and editing,

I mode, AL: 9-26, 9-27
decimal conversion and editing,

V mode, AL: 8-23 to 8-25
direct long form, I node, AL:

9-1
direct long form, V mode, AL:

8-1
field register, I mode, AL:

9-32
field register, V mode, AL:

8-29
float ing point accumulator, I

mode, AL: 9-28
floating point accumulator, V

mode, AL: 8-2 6
floa t ing po in t a r i thmet i c , I

mode, AL: 9-2 9
float ing po in t ar i thmet ic , V

mode, AL: 8-27
float ing point convers ion, I

mode, AL: 9-28
floating point conversion, V

mode, AL: 8-2 6
floating point load index, V

mode, AL: 8-27
float ing point rounding, I

mode, AL: 9-2 9
floating point rounding, V

mode, AL: 8-27
floating point, I mode, AL:

9-27
floating point, V mode, AL:

8-25

CX-17 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Ins t ruc t ions (con t inued)
generic, I mode, AL: 9-11 to

9-16
generic, V mode, AL: 8-8 to

8-13
hardware related, AL: 8-31
indirect long form, I mode,

AL: 9-1
indirect long form, V mode,

AL: 8-1
ind i rec t po in te r re la ted , AL:

10-1
input/output, AL: 8-32, 9-34
integer arithmetic, I mode,

AL: 9-23
integer arithmetic, V mode,

AL: 8-21
in te r -p rocedure t rans fe r, AL :

8-31, 9-33
interrupt handl ing, AL: 8-32,

9-34
jump and store, I mode, AL:

9-20
jump and store, V mode, AL:

8-17
jump, I mode, AL: 9-19, 9-20
jump, V mode, AL: 8-16 to 8-11
memory reference, I mode, AL:

9-21
memory reference, V mode, AL:

8-19
memory test and skip, V mode,

AL: 8-21
memory test, I mode, AL: 9-23
memory/register logic, I mode,

AL: 9-22
memory/register logic, V mode,

AL: 8-20
memory/register t ransfer, I

mode, AL: 9-21
memory/register t ransfer, V

mode, AL: 8-19
miscellaneous process related,

AL: 8-31, 9-33
misce l laneous res t r i c ted , AL :

8-32, 9-34
process exchange, AL: 8-32,

9-34
process related, AL: 8-31,

9-32
process related, I mode, AL:

9-32
process related, V mode, AL:

8-30

Ins t ruc t ions (con t inued)
queue management, AL: 8-31,

9-33
register generic, I mode, AL:

9 -11
restr ic ted, AL: 8-32, 9-34
semaphore, AL: 8-32, 9-34
shift generic, I mode, AL:

9-14
shift generic, V mode, AL:

8 -11
short form, I mode, AL: 9-1
short form, V mode, AL: 8-1
skip, V mode, AL: 8-12

INT, IS: 2-61

INT (I), AL: 9-28; IS: 3-56

INTA (V), AL: 8-2 6; IS: 2-61

In tege r a r i t hme t i c i ns t ruc t i ons ,
I mode, AL: 9-23
V mode, AL: 8-21

Integers, SA: 6-3

I n t e g r i t y ,
machine check, SA: 5-4
protect ion r ings, SA: 2-6

Interrupt response code, SA:
10-3

I n t e r r u p t s ,
d isabl ing, SA: 5-4
discussion, SA: 10-3
enabling, SA: 5-4
external, SA: 10-3
inh ib i t i ng , SA : 5 -4
memory increment, SA: B-19
response code, SA: 11-11
response time, SA: 11-11
standard, SA: 5-4
standard interrupt mode, SA:

B-21
vectored, SA: 5-4

Interval clock, SA: 10-46, B-27

Interval timer, SA: 9-25, B-18

INTH (I), AL: 9-28; IS: 3-57

Second Edition CX-18

COMPOSITE INDEX

INTL (V), AL: 8-2 6; IS: 2-62

Invoking the assembler, AL: 2-1

Inward calls, SA: 8-1, 8-7, 8-15

IOTLB,
address format, SA: 11-14
discussion, SA: 11-14, B-27
entry format, SA: 11-15, B-27
mapping information, SA: 11-14

IP pseudo-operation, AL: 5-3

IPSD, debugging with, AL: 14-14
to 14-21

IPSD, differences between VPSD
and,

breakpoints, AL: 14-18
DUMP subcommand, AL: 14-20
erase and kill characters, AL:

14-19
FR subcommand, AL: 14-18
GR subcommand, AL: 14-18
HR subcommand, AL: 14-18
immediate operands, AL: 14-20
MODE subcommand, AL: 14-17
PRINT subcommand, AL: 14-18
use with CPL and COMI files,

AL: 14-19

IR1 (I), AL: 9-12; IS: 3-57

IR2 (I), AL: 9-12; IS: 3-58

IRB (I), AL: 9-12; IS: 3-58

IRH (I), AL: 9-12; IS: 3-58

IRS (V), AL: 8-21; IS: 2-62

IRTC (I), AL: 9-34; IS: 3-58

IRTC (V), AL: 8-32; IS: 2-62

IRTN (I), AL: 9-34; IS: 3-59

IRTN (V), AL: 8-32; IS: 2-63

IRX (V), AL: 8-13; IS: 2-63

ITLB (I), AL: 9-34; IS: 3-59

ITLB (V), AL: 8-32; IS: 2-63

IX addressing mode, AL: 1-2,
10-1 to 10-4

IX mode (See GRR)

IX mode machine instructions,
AL: 10-1 to 10-4

JDX, IS: 2-64

JIX, IS: 2-64

JMP (I), AL: 9-19; IS: 3-60

JMP (V), AL: 8-17; IS: 2-64

JSR (I), AL: 9-20, 12-5; IS:
3-60

JST (V), AL: 8-18, 12-2; IS:
2-65

JSX (V), AL: 8-18, 12-2; IS:
2-65

JSXB (I), AL: 9-20, 12-6; IS
3-60

JSXB (V), AL: 8-18, 12-3; IS
2-66

JSY (V), AL: 8-18, 12-3; IS:
2-66

Jump instructions, SA: 7-6
I mode, AL: 9-19, 9-20
V mode, AL: 8-16 to 8-18

K

Keys,
CALF stack frame, SA: 10-13
CBIT, SA: 5-9
condition codes, SA: 5-9
discussion, SA: 5-4
ECB, SA: 8-5

CX-19 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Keys (continued)
format in S and R modes, SA:

5-5
format in V and I modes, SA:

5-6
instructions, SA: 5-8
LINK, SA: 5-9
PCL, SA: 8-10
PRTN, SA: 8-15
stack frame, SA: 8-4
undefined settings, SA: 5-10

L (I), AL: 9-21; IS: 3-61

L bit, SA: 8-6, 8-14

Label field, AL: 3-3
function of, AL: 3-10

Las t b i t , S A : 8-6, 8-14

LCC (IX) t AL: 10 -4 ; IS : 3-61

LCEQ (I) r AL: 9-13; IS : 3-62

LCEQ (V) r AL: 8 -10 ; IS : 2-67

LCGE (I) r AL: 9 -13 ; I S : 3-62

LCGE (V) r AL: 8-10; I S : 2-67

LCGT (I) r AL: 9-13; IS : 3-62

LCGT (V),r AL: 8-10; IS : 2-67

LCLE (I) ,r AL: 9-13; IS : 3-62

LCLE (V), AL: 8-10; IS : 2-67

LCLT (I) , AL: 9-13; IS : 3-63

LCLT (V), AL: 8 -10 ; IS : 2-67

LCNE (I) , AL: 9-13; IS : 3-63

LCNE (V), AL: 8-10; IS : 2-68

LDA (V) , AL: (3-20; I S : 2-68

LDAR (I) , AL: 9-21; IS : 3-63

LDC (I), AL: 9-32

LDC (V), AL: 8-30

LDL (V), AL: 8-20

IS: 3-64

IS: 2-68

IS: 2-69

LDLR (V), AL: 8-20; IS: 2-69

LDX (V), AL: 8-20; IS : 2-70

LDY (V), AL: 8-20; IS : 2-70

LEQ (I) , AL: 9-14; IS : 3-64

LEQ (V), AL: 8 -11 ; I S : 2-70

LF (I), AL: 9-13; IS: :3-64

LF (V), AL: 8-10; IS: 2-71

LFEQ (I) , AL: 9-14; I S : 3-65

LFEQ (V) r AL: 8 - 11 ; I S : 2-71

LFGE (I) r AL: 9-14; I S : 3-65

LFGE (V) r AL: 8 - 11 ; I S : 2-71

LFGT (I) r AL: 9 -14 ; IS : 3-65

LFGT (V) T AL: 8 - 11 ; IS : 2-71

LFLE (I) r AL: 9 -14 ; IS : 3-66

LFLE (V) r AL: 8 - 11 ; IS • 2-72

LFLI (I) , AL: 9-32; I S 3-66

LFLI (V),, AL: 8-2 9; IS : 2-72

LFLT (I) ,, A L : 9-14; IS : 3-66

LFLT (V), AL: 8 - 11 ; IS : 2-72

LFNE (I) , AL: 9 -14 ; IS : 3-66

LFNE (V), AL: 8 -11 ; IS : 2-72

LGE (I) , AL: 9-14; I S : 3-67

LGE (V), AL: 8 -11 ; IS : 2-73

LGT (I) , AL: 9-14; IS : 3-67

Second Edition CX-20

COMPOSITE INDEX

LGT (V), AL: 8-11; IS: 2-73

LH (I), AL: 9-21; IS: 3-67

r

LHEQ (I)

LHGE (I)

LHGT (I)

LHLl (I)

LHL2 (I)

LHL3 (I)

LHLE (I)

LHLT (I)

LHNE (I)

AL: 9-14

AL: 9-14

AL: 9-14

AL: 9-22

AL: 9-22

AL: 9-22

AL: 9-14

AL: 9-14

AL: 9-14

IS: 3-67

IS: 3-68

IS: 3-68

IS: 3-68

IS: 3-68

IS: 3-69

IS: 3-69

IS: 3-69

IS: 3-69

L ine ,
comment, AL: 3-1
cont inuat ion, AL: 3-3
header, AL: 3-1
statement, AL: 3-1

LINK, SA: 5-9

Link base (LB),
base register field, SA: 3-7
CALF stack frame, SA: 10-13
ECB, SA: 8-5
in t roduct ion , SA: 3 -4
offset , SA: 3-16
PCL instruction, SA: 8-10
PRTN instruction, SA: 8-15
stack frame, SA: 8-4

LINK pseudo-operation, AL: 4-2

L i n k i n g ,
using BIND, AL: 13-3
using SEG, AL: 13-2

Linking an assembled program,
AL: 13-1 to 13-3

LIOT (I), AL: 9-34

LIOT (V), AL: 8-32

LIP (IX), AL: 10-2

IS: 3-70

IS: 2-73

IS: 3-70

LIR pseudo-operation, AL: 6-4

LIST pseudo-operation, AL: 4-15

List ing format, assembler, AL:
2 -4

L i t e r a l s ,
control of placement of, AL:

5 -11
I mode processing of, AL: 3-13
in operand field, AL: 3-11
processing at END statement,

AL: 4-2
V mode processing of, AL: 3-13
values defined by expressions,

AL: 3-12

LLE (I)

LLE (V)

LLEQ (V

LLGE (V

LLGT (V

LLL (V)

LLLE (V

LLLT (V

LLNE (V

LLR (V)

LLS (V)

LLT (I)

LLT (V)

LNE (I)

LNE (V)

AL: 9-14; IS: 3-71

AL: 8-11; IS: 2-74

AL: 8-11

AL: 8-11

AL: 8-11

IS: 2-74

IS: 2-74

IS: 2-74

AL: 8-12; IS: 2-75

AL: 8-11

AL: 8-11

AL: 8-11

AL: 8-12

AL: 8-12

AL: 9-14

AL: 8-11

AL: 9-14

AL: 8-11

IS: 2-75

IS: 2-75

IS: 2-75

IS: 2-76

IS: 2-76

IS: 3-71

IS: 2-77

IS: 3-71

IS: 2-77

Load/s to re spec ia l ins t ruc t ions ,
SA: 6-13

Local subroutine, AL: 12-1 to
12-5

CX-21 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Local subroutine (continued)
calling in I mode, AL: 12-5,

12-6
calling in V mode, AL: 12-2 to

12-5
JSR call, AL: 12-5
JST call, AL: 12-2
JSX call, AL: 12-2
JSXB call (I mode), AL: 12-6
JSXB call (Vmode), AL: 12-3
JSY call, AL: 12-3

Location counter,
mode and value of, AL: 4-3

Locks, SA: B-3, B-5

Logic instruct ions, SA: 6-2

Log ica l sh i f t i ns t ruc t ion , SA:
6-14

Logical values, SA: 6-2

Long form indirection, SA: 3-9

Long form instructions,
I mode direct, AL: 9-1
I mode indirect, AL: 9-1
V mode direct, AL: 8-1
V mode indirect, AL: 8-1

LPID (I), AL: 9-34; IS: 3-72

LPID (V), AL: 8-32; IS: 2-77

LPSW (I), AL: 9-34; IS: 3-72

LPSW (V), AL: 8-32; IS: 2-77

LRL (V), AL: 8-12; IS: 2-79

LRR (V), AL: 8-12; IS: 2-79

LRS (V), AL: 8-12; IS: 2-79

LSMD pseudo-operation, AL: 4-15

LSTM pseudo-operation, AL: 4-15

LT (I), AL: 9-13; IS: 3-73

LT (V), AL: 8-10; IS: 2-80

M (I), AL: 9-25; IS: 3-74

MAC pseudo-operation, AL: 7-3,
11-2

Machine check,
discussion, SA: 10-18
recoverable (See Recoverable

machine check)

Machine instruct ion statement,
AL: 3-2, 3-16

Machine instruct ions, (See also
I n s t r u c t i o n s)

I mode, AL: 9-1 to 9-34
IX mode, AL: 10-1 to 10-4
V mode, AL: 8-1 to 8-33

Macro,
argument ident ifier, AL: 11-7
argument reference, AL: 7-2,

11-2, 11-3, 11-5
argument subst i tu t ion, AL:

11-5
argument value, AL: 7-2, 11-2,

11-5
at t r ibute re ferences, AL: 11-4
calling a, AL: 7-2
code groups, AL: 7-3
condit ional assembly in, AL:

11-5, 11-9
defini t ion block, AL: 7-2, 7-3
dummy word, AL: 11-2, 11-6
l i s t i ng con t ro l , AL : 11 -9
local labels, AL: 11-4
name, AL: 7-2, 7-3, 11-1, 11-2
nest ing, AL: 11-8
placement of in program, AL:

7-3, 11-2

Macro call, AL: 3-2, 7-2, 11-1,
11-4

using as documentation, AL:
11-6

Macro definit ion, AL: 3-2, 11-1,
11-2

Macro faci l i ty, AL: 11-1 to
11-10

Second Edition CX-22

COMPOSITE INDEX

Mapped I/O, SA: 11-13, 11-17,
B-27

Mask word for queues, SA: 6-43

Master ISU, SA: C-l

Memory,
cache, (See also Cache memory)
data structures, SA: 4-3
details of access, SA: 4-19,

B-10
detai ls of address translat ion,

SA: 4-2 6
DTAR format, SA: 4-15
hardware page map table, SA:

4-18
in te r leav ing , SA: 2 -4
management, SA: 4-1, B-8
management data structures,

SA: 4-3
manager, SA: 2-1
page faults, SA: 4-2 9
parity error, SA: 10-18
physical (See Physical memory)
segment descriptor word, SA:

4-16
timing information, SA: 4-24,

4-2 6
virtual (See Virtual memory)

Memory increment interrupt, SA:
B-19

Memory interleaving, SA: 2-4

Memory manager, SA: 2-1

Memory parity error, SA: 10-18

Memory reference instructions,
I mode, AL: 9-21
V mode, AL: 8-19

Memory test and skip
i n s t r u c t i o n s ,

V-mode, AL: 8-21

Memory test instructions,
I mode, AL: 9-23

Memory / reg is ter log ic
i n s t r u c t i o n s ,

I mode, AL: 9-22
V mode, AL: 8-20

Memory / reg is te r t rans fe r
i n s t r u c t i o n s ,

I mode, AL: 9-21
V mode, AL: 8-19

Messages, assembler, AL: 2-4

MH (I), AL: 9-25; IS: 3-74

Microcode, SA: 1-4, B-2

Mic rocode reg is te r fi les ,
for ear l ier processors, SA:

B-18
for Prime 2350 to 2755, SA:

9-24
for Prime 6350, SA: 9-22
for Prime 9650 and 9655, SA:

9-22
for Prime 9750 to 9955 II, SA:

9-22

Microsecond timer, SA: C-l l

Missing memory module, SA: 10-lf

Modals,
discussion, SA: 5-2
format, SA: 5-3
i ns t ruc t i ons , SA : 5 -4
MCM field, SA: 10-34

MPL (V), AL: 8-23; IS: 2-81

MPY (V), AL: 8-23; IS: 2-81

N

N (I), AL: 9-22; IS: 3-75

NFYB (I), AL: 9-34; IS: 3-75

NFYB (V), AL: 8-33; IS: 2-82

NFYE (I), AL: 9-34; IS: 3-75

NFYE (V), AL: 8-33; IS: 2-82

CX-23 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

NH (I), AL: 9-22; IS: 3-76

NLSM pseudo-operation, AL: 4-15

NLST pseudo-operation, AL: 2-4,
4-15

Nonindexing instructions,
16S mode, SA: 3-2 9
32R mode, SA: 3-24
32S mode, SA: 3-31
64R mode, SA: 3-27
64V mode, SA: 3-19, B-6

NOP (I), AL: 9-33; IS: 3-7 6

NOP (V), AL: 8-31; IS: 2-82

Normalization, SA: 6-23, 6-25,
B-12

Numbers, SA: 6-3, 6-4

0

0 (I), AL: 9-22; IS: 3-77

OCP, IS: 2-83

OCP action, SA: 11-10

OCT pseudo-operation, AL: 5-10

Offsets, SA: 3-2, 3-4

OH (I), AL: 9-22; IS: 3-77

Operand field, AL: 3-3
function of, AL: 3-11
function of equal sign in, AL:

3-12
functions of asterisk in, AL:

3-11
literals in, AL: 3-11

Operating system,
access via user programs, SA:

2-5
automatic shutdown, SA: 10-18
concealed stack, SA: 10-12
embedded, SA: 8-1, 8-7, 8-15

Operating system (continued)
environment sensor support,

SA: 10-18
gate segments, SA: 8-7
returning from inward calls,

SA: 8-15
segmentation, SA: 2-5
UPS support, SA: 10-18
virtual memory management, SA:

2-1

Operation field, AL: 3-3
function of, AL: 3-11

ORA (V), AL: 8-20; IS: 2-83

ORG pseudo-operation, AL: 4-3

OTA, IS: 2-83

OTA action, SA: 11-10

OTK, IS: 2-83

OTK (I), AL: 9-13; IS: 3-77

Overflow, SA: 6-23

Overlap between field and
float ing-po in t reg is ters ,
SA: 6-17, 6-21, 9-20

OWNER, SA: 9-20

OWNERH, SA: 9-2, 9-20

Packed decimal data, SA: 6-33

Page map table, SA: 4-17, 4-29

Pages,
discussion, SA: 2-5
disk vs. memory, SA: 4-2
hardware page map table, SA:

4-18
page fault vector, SA: 10-8
page faults, SA: 4-2 9
status checking during address

translation, SA: 4-29

Second Edition CX-24

COMPOSITE INDEX

r

PCB,
concealed stack, SA: 10-11
discussion, SA: 9-2
fault vectors, SA: 10-7
format, SA: 9-3
format for Prime 850, SA: C-4
interval timer, SA: 9-25, B-18
OWNERH, SA: 9-2, C-3
Prime 850 dispatcher, SA: C-12
Prime 850 format, SA: C-3
PX lock, SA: C-6
wait l ist, SA: 9-7

PCBA and PCBB, SA: 9-5

PCL (I), AL: 9-33; IS: 3-78

PCL (V), AL: 8-31; IS: 2-84

PCL vs. CALL mechanism, AL: 12-8
to 12-14

PCVH pseudo-operation, AL: 4-16

Performance,
burst-mode DMA, SA: 11-18
burst-mode DMT, SA: 11-20
character manipulat ion

ins t ruc t ions , SA: 6 -38
fast array reference

ins t ruc t ions , SA: 6 -9
fast decrement instruct ions,

SA: 6-7
fast increment ins t ruct ions,

SA: 6-4
fast setting of bits in A, SA:

6-7
mapped I/O, SA: 11-13, B-27
pipel ine flushing, SA: 1-9
public vs. private shared

segments, SA: 4-21
Ring 0 memory access, SA: 4-21

Phantom interrupt code, SA: 10-4

Physical memory,
addressing, SA: 3-1
conversion from virtual

address, SA: 4-2
data structures, SA: 4-3
details of access, SA: 4-19,

B-10
detai ls of address translat ion,

SA: 4-26

Physical memory (continued)
discussion, SA: 2-2
DTAR format, SA: 4-15
elements, SA: 2-2
error detection and correction,

SA: 2-4, B-5
hardware page map table, SA:

4-18
inter leaving, SA: 2-4, B-5
in t roduc t ion , SA: 2 -1
packaging, SA: 2-4, B-5
page faults, SA: 4-29
pages, SA: 2-3
segment descriptor word, SA:

4-16
size of, SA: 3-1
STLB, SA: 2-8
t iming informat ion, SA: 4-24,

4-26
t rans la t i on f rom v i r t ua l

memory, SA: 4-1

Physical queues, SA: 6-41

PID, IS: 2-84

PID (I), AL: 9-24; IS: 3-78

PIDA (V), AL: 8-22; IS: 2-84

PIDH (I), AL: 9-24; IS: 3-78

PIDL (V), AL: 8-22; IS: 2-84

PIM, IS: 2-85

PIM (I), AL: 9-24; IS: 3-79

PIMA (V), AL: 8-22

PIMH (I), AL: 9-24

PIML (V), AL: 8-22

IS: 2-85

IS: 3-79

IS: 2-85

PIO,
communicat ions cont ro l ler

addresses, SA: 11-7
control ler address assignments,

SA: 11-5
controller ID numbers, SA:

11-7
discussion, SA: 11-2

CX-25 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

PIO (continued)
EIO effect on condition codes,

SA: 11-10
ins t ruc t ions , SA: 11-2

P i p e l i n e ,
2-phase, SA: 1-9
5-stage, SA: 1-7
exp l i c i t flush by ins t ruc t ion

stream, SA: 1-9
flushing, SA: 1-9
handl ing inva l idat ion v ia

branch cache, SA: 1-9
in t roduct ion, SA: 1-7

PMT,
discussion, SA: 4-17
entry format, SA: 4-17
use during address translation,

SA: 4-29

P o i n t e r ,
argument, AL: 5-2; SA: 8-6
bit number, SA: 3-9
C language, AL: 1-2
discussion, SA: 3-9
extension bit, SA: 3-9
fault bi t , SA: 3-9
indirect , AL: 5-2, 5-3; SA:

8-6
to external module, AL: 5-3

Postindexed addressing, SA: 3-10

Power-up,
in i t i a l i za t ion va lues , SA: A-2
process, SA: A-1

PPA and PPB, SA: 9-5

Preindexed addressing, SA: 3-10

Prime 150 (See Earlier
processors)

Prime 2250 (See Earlier
processors)

Prime 2350 (See individual
sub jec t s)

Prime 2450 (See individual
sub jec t s)

Prime 250 (See Earlier
processors)

Prime 250-11 (See Earlier
processors)

Prime 2550 (See individual
sub jec t s)

Prime 2 655 (See individual
sub jec t s)

Prime 2755 (See individual
sub jec t s)

Prime 350 (See Earlier
processors)

Prime 400 (See Earlier
processors)

Prime 450 (See Earlier
processors)

Prime 500 (See Earlier
processors)

Prime 550 (See Earlier
processors)

Prime 550-11 (See Earlier
processors)

Prime 6350 (See individual
sub jec t s)

Prime 650 (See Earlier
processors)

Prime 750 (See Earlier
processors)

Prime 850 (See Earlier
processors)

Prime 9650 (See individual
sub jec t s)

Prime 9 655 (See individual
sub jec t s)

Prime 9750 (See individual
sub jec t s)

Second Edition CX-2 6

COMPOSITE INDEX

r

Prime 9755 (See individual
subjects)

Prime 9950 (See individual
subjects)

Prime 9955 (See individual
subjects)

Prime 9955 II (See individual
subjects)

Prime ECS, AL: 1-2, C-l
Assembly programming

considerations, AL: C-6
Character entry formats, AL:

C-2 to C-5
Character set table, AL: C-7

to C-15
Special meanings of some

characters, AL: C-5
Terminal requirements for, AL:

C-2

Prime Extended Character Set
(See Prime ECS)

Prime 1450 (See Earlier
processors)

PRIMOS (See Operating system)

Priority headers, SA: 9-5

PROC pseudo-operation, AL: 4-3

Procedure base (PB),
base register field, SA: 3-7
CALF stack frame, SA: 10-13
introduction, SA: 3-3
PCL instruction, SA: 8-10

Procedure control block (See
PCB)

Procedures,
address of current link frame,

SA: 3-4
address of current stack frame,

SA: 3-4
address of currently active

procedure, SA: 3-3
affected registers, SA: 8-15

Procedures (continued)
argument transfer instruction,

SA: 8-14
details of calling, SA: 8-7
discussion, SA: 8-1
ECB, SA: 8-5
gate segments, SA: 8-7
inward calls, SA: 8-7
PCL instruction, SA: 8-2
returning to caller, SA: 8-15
stack management, SA: 8-2
types of calls, SA: 8-1

Process exchange mechanism,
affecting break handling, SA:

10-2
affecting interrupt handling,

SA: 10-4
check handler operation, SA:

10-35
discussion, SA: 9-1, C-l
dispatcher, SA: 9-16, 9-27,

B-18
dispatcher operation, SA: C-ll
dual-stream processors, SA:

C-l
example of ready list use, SA:

9-6
fault servicing, SA: 10-12
instructions, SA: 9-9
interval timer, SA: 9-25, B-18
NOTIFY on Prime 850, SA: C-9
OWNER, SA: 9-20
OWNERH, SA: 9-2, 9-20
PCB, SA: 9-2
PCBA and PCBB, SA: 9-5
PPA and PPB, SA: 9-5
priority headers, SA: 9-5
PX lock, SA: C-3
ready list, SA: 9-2
register files, SA: 9-17
semaphores, SA: 9-7
wait list, SA: 9-7

Processes,
dispatcher, SA: 9-16, 9-27,

B-18
fault vectors, SA: 10-7
implementation on single-stream

processors, SA: 9-1
instructions for scheduling,

SA: 9-9
interval timer, SA: 9-25, B-18
introduction, SA: 8-1

CX-27 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Processes (continued)
PCB, SA: 9-2
process exchange mechanism,

SA: 9-1
process exchange on Prime 850,

SA: C-l
register fi les (See User

r e g i s t e r fi l e s)
semaphores, SA: 9-7
wait l ist, SA: 9-7

Processor board overtemperature
sensor, SA: 10-18

Program counter,
relationship to PB, SA: 3-4
t ransfer r ing cont ro l , SA: 8-1

Program debugging, AL: 14-2

Program execution, AL: 14-1

Program linking, AL: 13-1 to
13-3

Program structure, AL: 3-17

Programmed I/O (See PIO)

Protection rings, SA: 2-6, 3-2

PRTN (I), AL: 9-33; IS: 3-80

PRTN (V), AL: 8-31; IS: 2-86

PRTN return from external
subrout ine, AL: 12-14

Pseudo-operations, AL: 3-2
address definit ion (AD), AL:

5 -2
AP, AL: 5-2
assembly control (AC), AL: 4-1
BACK, AL: 4-5
BCI, AL: 5-5
BCZ, AL: 5-5
BES, AL: 5-13
BSS, AL: 5-13
BSZ, AL: 5-13
CALL, AL: 6-4, 12-7
CENT, AL: 6-2
classes of, AL: 3-14
COMM, AL: 5-13

Pseudo-operat ions (cont inued)
conditional assembly (CA), AL:

4 -5
D32I, AL: 6-3
D64V, AL: 6-2
DAC, AL: 5-2
DATA, AL: 5-6
data definition (DD), AL: 5-4
DEC, AL: 5-9
DFTB, AL: 4-6
DFVT, AL: 4-6
DUII, AL: 6-3
DYNM, AL: 4-11
DYNT, AL: 6-4
ECB, AL: 6-5, 12-14
EJCT, AL: 4-15
ELM, AL: 6-3
ELSE, AL: 4-7
END, AL: 4-2
ENDC, AL: 4-7
ENDM, AL: 7-3, 11-2
ENT, AL: 6-7, 12-14
EQU, AL: 4-13
EXT, AL: 6-6, 12-7
FAIL, AL: 4-7
FIN, AL: 5-11
functions of, AL: 3-13
GO, AL: 4-7
HEX, AL: 5-9
IF, AL: 4-7
IFM, AL: 4-9
IFN, AL: 4-9
IFP, AL: 4-9
IFTF, AL: 4-10
IFTT, AL: 4-10
IFVF, AL: 4-10
IFVT, AL: 4-10
IFx, AL: 4-8
IFZ, AL: 4-9
IP, AL: 5-3
LINK, AL: 4-2
LIR, AL: 6-4
LIST, AL: 4-15
l ist of, AL: 3-15
l ist ing control (LC), AL: 4-14
l i tera l cont ro l (LT) , AL: 5-11
loader control (LD), AL: 6-1,

6-2
LSMD, AL: 4-15
LSTM, AL: 4-15
MAC, AL: 7-3, 11-2
macro definition (MD), AL: 7-1
NLSM, AL: 4-15
NLST, AL: 2-4, 4-15

" >

Second Edition CX-28

COMPOSITE INDEX

Pseudo-operat ions (cont inued)
OCT, AL: 5-10
ORG, AL: 4-3
PCVH, AL: 4-16
PROC, AL: 4-3
program linking (PL), AL: 6-4
RLIT, AL: 5-11
SAY, AL: 7-3
SCT, AL: 7-3
SCTL, AL: 7-6
SEG, AL: 4-3
SEGR, AL: 4-4
SET, AL: 4-13
storage al location (SA), AL:

5-12
SUBR, AL: 6-7
symbol defining (SD), AL: 4-11
SYML, AL: 6-7
VFD, AL: 5-10
XAC, AL: 5-4
XSET, AL: 4-13

PTLB (I), AL: 9-34; IS: 3-80

PTLB (V), AL: 8-32; IS: 2-86

Pure procedure, SA: 1-9

Pure procedure segment, AL: 4-4

PX lock, SA: C-3, C-6

PXM (See Process exchange
mechanism)

QCB,
alignment, SA: 6-42
discussion, SA: 6-41
format, SA: 6-42

QFAD (I), AL: 9-29; IS: 3-81

QFAD (V), AL: 8-27; IS: 2-87

QFC (I), AL: 9-28; IS: 3-81

QFCM (I), AL: 9-28; IS: 3-82

QFCM (V), AL: 8-2 6; IS: 2-87

QFCS (V)

QFDV (I)

QFDV (V)

QFLD (I)

QFLD (V)

QFLX (V)

QFMP (I)

QFMP (V)

QFSB (I)

QFSB (V)

QFST (I)

QFST (V)

QINQ (I)

QINQ (V)

QIQR (I)

QIQR (V)

QMCS (V)

AL: 8-26

AL: 9-2 9

AL: 8-27

AL: 9-28

AL: 8-26

AL: 8-27

AL: 9-2 9

AL: 8-27

AL: 9-29

AL: 8-27

AL: 9-28

AL: 8-26

AL: 9-28

AL: 8-2 6

AL: 9-28

AL: 8-26

AL: 8-26

IS: 2-88

IS: 3-82

IS: 2-88

IS: 3-83

IS: 2-89

IS: 2-89

IS: 3-83

IS: 2-90

IS: 3-84

IS: 2-90

IS: 3-84

IS: 2-91

IS: 3-85

IS: 2-91

IS: 3-86

IS: 2-92

Quad prec is ion float ing-po in t ,
SA: 6-19

Queue control block, SA: 6-41,
6-42

Queues,
algor i thms, SA: 6-44
discussion, SA: 6-41
instruct ions, SA: 6-45, 6-46
mask word, SA: 6-43
maximum number of elements,

SA: 6-44
physical , SA: 6-41
Prime 850 locks, SA: B-5
v i r tua l , SA: 6 -41

CX-2 9 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

R

R mode,
behavior relating to 5-stage

pipeline, SA: 1-9
discussion, . SA: 3-12
index limitations, SA: 3-8
input/output, SA: 11-2
introduction, SA: 3-12

1-9performance, SA

RBQ (I), AL: 9-33

RBQ (V), AL: 8-31

RCB (I), AL: 9-13

RCB (V), AL: 8-10

IS: 3-88

IS: 2-94

IS: 3-88

IS: 2-94

Ready list,
data base, SA: 9-5
discussion, SA: 9-2
example, SA: 9-6
example with associated PCB

lists, SA: 9-4
instructions, SA: 9-13
Prime 850, SA: C-6

Recoverable machine check, SA:
10-18, 10-36, 10-37

Register file,
actions during interrupt

handling, SA: 10-3
allocation for 2350 to 2755,

SA: 9-17
allocation for 6350, SA: 9-16
allocation for 9650 and 9655,

SA: 9-17
allocation for 9750 to 9955 II,

SA: 9-16
allocation for earlier

processors, SA: B-17
arithmetic exceptions, SA:

10-16, B-22
check handling by processor,

SA: 10-34
decimal instructions, SA: 6-36
direct addressing, SA: 9-21
DMA channels, SA: 9-21, 11-16
floating-point registers, SA:

6-19
interval timer in dispatcher,

SA: 9-27, B-18

Register file (continued)
manipulation by dispatcher,

SA: 9-28
microcode scratch for earlier

processors, SA: B-18
microcode scratch for Prime

2350 to 2755, SA: 9-24
microcode scratch for Prime

6350, SA: 9-22
microcode scratch for Prime

9650 and 9655, SA: 9-24
microcode scratch for Prime

9750 to 9955 II, SA: 9-22
NOTIFY instruction, SA: 9-13
Prime 850, SA: C-10
Prime 850 dispatcher, SA: C-12
r e g i s t e r - t o - r e g i s t e r

instructions, SA: 6-13
relationship to processor, SA:

1-5
restoring, SA: 6-13
save by NOTIFY instruction,

SA: 9-13
saving, SA: 6-13
short save by WAIT instruction,

SA: 9-9
TIMERH and TIMERL, SA: C-ll
use by dispatcher, SA: 9-27,

B-18
user processes (See User

register fi les)
WAIT instruction, SA: 9-9

Register overlap between field
and floating-point registers,
SA: 6-17, 6-21, 9-20

Register to register address
format, AL: 1-2, 9-7

Registers,
correspondence between V mode

and I mode, AL: 8-7, 9-10
saving and restoring, AL: 8-7,

9-9
size of, AL: 8-6, 9-9
visible to I mode programs,

AL: 9-9
visible to V mode programs,

AL: 8-6

Restricted instructions,
discussion, SA: 5-1
list of, SA: 5-11

Second Edition CX-30

COMPOSITE INDEX

Result of the chain, SA: 3-8

Ring 0,
queues, SA: 6-42
restricted instructions, SA:

5-1

Ring 2, SA: 4-21

Ring numbers,
calculation during procedure

call, SA: 8-7
calculation during procedure

return, SA: 8-15
discussion, SA: 3-2
queues, SA: 6-42
restricted instructions, SA:

5-1
undefined results, SA: 4-21
weakening during memory access,

SA: 4-21

Rings of protection, SA: 2-6,
3-2

RLIT pseudo-operation, AL: 5-11

RMC (I), AL: 9-34

RMC (V), AL: 8-33

ROT (I), AL: 9-16

Rotate instructions

Rounding, SA: 6-24

RRST (I), AL: 9-22

RRST (V), AL: 8-20

RSAV (I), AL: 9-22

RSAV (V), AL: 8-20;

RTQ (I), AL: 9-33

RTQ (V), AL: 8-31

RTS (I), AL: 9-34

RTS (V), AL: 8-33

IS: 3-88

IS: 2-94

IS: 3-88

SA: 6-14

B-13

IS: 3-89

IS: 2-94

IS: 3-90

IS: 2-95

IS: 3-91

IS: 2-96

IS: 3-91

IS: 2-96

S (I), AL: 9-25; IS: 3-92

S bit, SA: 8-6, 8-11, 8-15

S mode,
behavior relating to 5-stage

pipeline, SA: 1-9
discussion, SA: 3-12
index limitations, SA: 3-8
input/output, SA: 11-2
introduction, SA: 3-12
performance, SA: 1-9

SIA (V), AL: 8-9; IS: 2-98

S2A (V), AL: 8-9; IS: 2-98

SAR (V), AL: 8-13; IS: 2-98

SAS (V), AL: 8-13; IS: 2-99

Save Done bit, SA: 9-28, C-12

SAY pseudo-operation, AL: 7-3

SBL (V), AL: 8-23; IS: 2-99

SCB (I), AL: 9-13; IS: 3-92

SCB (V), AL: 8-10; IS: 2-99

SCC (IX), AL: 10-4; IS: 3-92

SCT pseudo-operation, AL: 7-3

SCTL pseudo-operation, AL: 7-6

SDT, SA: 4-16, 4-29

SDW, SA: 4-16

Sector,
addressing current, SA: 3-29,

3-31
discussion, SA: 3-12

Security and protection rings,
SA: 2-6

SEG linker, AL: 13-2

SEG pseudo-operation, AL: 4-3

CX-31 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Segment descriptor table,
discussion, SA: 4-16
use during address translation,

SA: 4-29

Segment descriptor word,
discussion, SA: 4-16
entry format, SA: 4-16

Segment number, AL: 8-1, 9-1

Segment numbers,
discussion, SA: 3-2
use during address translation,

SA: 4-2 9

Segment Table Lookaside Buffer
(See STLB)

Segment Table Origin Register,
SA: 4-15, 4-29

Segmentation and STLB, SA: 1-4

Segments,
access rights, SA: 4-16
CALF stack frame stack root,

SA: 10-13
dedicated to PCB, SA: 9-2
descriptor words, SA: 4-16
discussion, SA: 2-5
faults, SA: 4-29
gate access, SA: 8-7
numbers, SA: 3-2
protection rings, SA: 2-6
segment fault handling, SA:

10-8
segmented mode, SA: 3-16
shared, SA: 2-5, 4-19
stack extension, SA: 8-2
stack root, SA: 8-4, 8-5
transferring program control

between, SA: 7-1, 7-6
unshared, SA: 2-5
use of segment 0 for check

vectors, SA: 10-21
use of segment 4 for check

headers, SA: 10-21

SEGR pseudo-operation, AL: 4-4

Self-modifying code, SA: 1-9

Semaphores, SA: 9-7

SET pseudo-operation, AL: 4-13

SGL, IS: 2-100

SGT (V), AL: 8-13; IS: 2-100

SH (I), AL: 9-25; IS: 3-93

SHA (I), AL: 9-16; IS: 3-93

Shared subsystem implementation
via segmentation, SA: 2-5

Shift instructions, SA: 6-14,
6-15

SHL (I), AL: 9-15; IS: 3-94

SHLl (I), AL: 9-15; IS: 3-95

SHL2 (I), AL: 9-15; IS: 3-95

Short form indirection, SA: 3-8

Short form instructions,
V mode, AL: 8-1

Short form instructions, I mode,
AL: 9-1

Shortcall, AL: 1-2

SHORTCALL mechanism, external
subroutine, AL: 12-15 to
12-20

SHR1 (I), AL: 9-15; IS: 3-96

SHR2 (I), AL: 9-15; IS: 3-96

Signed integers,
formats, SA: 6-3
instructions, SA: 6-4

Single precision floating-point,
SA: 6-19

Single-stream architecture, SA:
1-2, B-2

Skip instructions, SA: 7-1

SKP (V), AL: 8-13; IS: 2-100

Second Edition CX-32

COMPOSITE INDEX

SKS, IS: 2-101

SKS action, SA: 11-10

SL1 (I), AL: 9-15; IS: 3-96

SL2 (I), AL: 9-15; IS: 3-96

Slave ISU, SA: C-l

SLE (V), AL: 8-13; IS: 2-102

SLN (V), AL: 8-13; IS: 2-102

SLZ (V), AL: 8-13; IS: 2-102

SMCR (V), AL: 8-31; IS: 2-102

SMCS (V), AL: 8-31; IS: 2-103

SMI (V), AL: 8-13; IS: 2-103

SNZ (V), AL: 8-13; IS: 2-103

SPL (V), AL: 8-13; IS: 2-103

SRI (I), AL: 9-15; IS: 3-96

SR2 (I), AL: 9-15; IS: 3-97

SRC (V), AL: 8-13; IS: 2-103

SSC (V), AL: 8-13; IS: 2-104

SSM (I), AL: 9-13; IS: 3-97

SSM (V), AL: 8-10; IS: 2-104

SSP (I), AL: 9-13; IS: 3-97

SSP (V), AL: 8-10; IS: 2-104

SSSN (I), AL: 9-33; IS: 3-97

SSSN (V), AL: 8-31; IS: 2-104

ST (I), AL: 9-22; IS: 3-98

STA (V), AL: 8-20; IS: 2-105

STAC (V), AL: 8-20; IS: 2-105

Stack,
a l locat ion, SA: 8-10
allocation of argument

pointers, SA: 8-14
argument t ransfer ins t ruct ion,

SA: 8-14
caller's state saved, SA: 8-10
concealed, SA: 10-10
deal locat ion by returning, SA:

8-15
discussion, SA: 8-2
ECB, SA: 8-5
extension pointer, SA: 8-3
extension segments, SA: 8-2
frame format, SA: 8-4
frame size, SA: 8-5
frames, SA: 8-3
header, SA: 8-2
stack root, SA: 8-2, 8-4, 8-5

Stack base (SB),
base register field, SA: 3-7
CALF stack frame, SA: 10-13
in t roduc t ion , SA: 3 -4
stack al location, SA: 8-10
stack deallocation, SA: 8-15
stack frame, SA: 8-4

Stack frame, AL: 4-11, 5-2
(See also ECB pseudo-operation)

Standard interrupt mode, SA:
B-21

STAR (I), AL: 9-22; IS: 3-98

Statement,
machine instruct ion, AL: 3-2,

3-16
macro call, AL: 3-2
macro defini t ion, AL: 3-2
pseudo-operat ion, AL: 3-2
syntax, AL: 3-3
types of, AL: 3-2

Statement elements,
constants, AL: 3-4
symbols, AL: 3-4

Statement fie ld ,
comment, AL: 3-3
label, AL: 3-3
operand, AL: 3-3
operat ion, AL: 3-3

CX-33 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Statement lines, AL: 3-1

STC (I), AL: 9-32; IS: 3-99

STC (V), AL: 8-30; IS: 2-105

STCD (I), AL: 9-22; IS: 3-99

STCH (I), AL: 9-22; IS: 3-100

STEX (I), AL: 9-33; IS: 3-100

STEX (V), AL: 8-31; IS: 2-106

STFA (I), AL: 9-32; IS: 3-101

STFA (V), AL: 8-29; IS: 2-106

STH (I), AL: 9-22; IS: 3-101

STL (V), AL: 8-20; IS: 2-107

STLB,
access details, SA: 4-19, 4-24
details of access, SA: 4-19,

B-10
discussion, SA: 1-4, 1-10,

2-8, B-2
entry format, SA: 4-5, B-8
hashing algorithm for earlier

processors, SA: B-9
hashing algorithm for Prime

2350 to 2655, SA: 4-12
hashing algorithm for Prime

2755, SA: 4-10
hashing algorithm for Prime

6350, SA: 4-7
hashing algorithm for Prime

9650 and 9655, SA: 4-12
hashing algorithm for Prime

9750 to 9950, SA: 4-9
hashing algorithm for Prime

9955 and 9955 II, SA: 4-7
IOTLB, SA: 11-14, B-27
use during address conversion,

SA: 4-2
use during procedure call, SA:

8-7

STLC (V), AL: 8-20; IS: 2-107

STLR (V), AL: 8-20; IS: 2-107

Store bit, SA: 8-6, 8-11, 8-15

STPM (I), AL: 9-34; IS: 3-101

STPM (V), AL: 8-33; IS: 2-108

Stream synchronization unit, SA:
B-3

String manipulation,
examples, SA: 6-38
field operation instructions,

SA: 6-17
instructions, SA: 6-38

Structure of a program, AL: 3-17

STTM (I), AL: 9-33; IS: 3-103

STTM (V), AL: 8-31; IS: 2-110

STX (V), AL: 8-20

STY (V), AL: 8-20

SUB (V), AL: 8-23

IS: 2-110

IS: 2-111

IS: 2-111

SUBR pseudo-operation, AL: 6-7

Subroutine, (See also external
subroutine; local subroutine)

entrypoint, AL: 12-10, 12-14
external, AL: 12-1, 12-7 to

12-14
external call, AL: 12-7
local, AL: 12-1 to 12-5
local call in I mode, AL:

12-5, 12-6
local call in V mode, AL: 12-2

to 12-5
transferring control to (See

CALL pseudo-operation; ECB
pseudo-operation)

Subroutines (See Procedures)

SVC (I), AL: 9-33; IS: 3-103

SVC (V), AL: 8-31; IS: 2-112

Symbol table,
in conditional assembly, AL:

4-6, 4-9, 4-10

Symbol table, assembler, AL:
1-1, 2-1

Second Edition CX-34

COMPOSITE INDEX

Symbology,
assembler listing, AL: 2-6
cross reference listing, AL:

2-7

Symbols,
characters allowed in, AL: 3-4

SYML pseudo-operation, AL: 6-7

Syndrome bits,
discussion, SA: 10-42
for Prime 6350, SA: 10-42
for Prime 9750 to 9955 II, SA:

10-43
for rest of 50 series, SA:

10-44

Syntax, statement, AL: 3-3

System overview, SA: 1-1, B-2

SZE (V), AL: 8-13; IS: 2-112

T

TAB (V), AL: 8-9; IS: 2-113

Tag modifier, SA: 3-20

TAK (V), AL: 8-9, 8-10; IS:
2-113

TAX (V), AL: 8-9; IS: 2-113

TAY (V), AL: 8-9; IS: 2-113

TBA (V), AL: 8-9; IS: 2-113

TC (I), AL: 9-12; IS: 3-104

TCA (V), AL: 8-10; IS: 2-114

TCH (I), AL: 9-12; IS: 3-104

TCL (V), AL: 8-10; IS: 2-114

TCNP (IX), AL: 10-4; IS: 3-104

Term,
definition of, AL: 3-5
determining the mode of, AL:

3-6, 3-7
examples of, AL: 3-5
mode of, AL: 3-6
value of, AL: 3-5

TFLL (V), AL: 8-29; IS: 2-114

TFLR (I), AL: 9-32; IS: 3-105

Time-sharing (See Process
exchange mechanism)

TKA (V), AL: 8-9, 8-10; IS:
2-114

TLFL (V), AL: 8-29; IS: 2-115

TM (I), AL: 9-23; IS: 3-105

TMH (I), AL: 9-23; IS: 3-105

Transferring control to
subroutines (See CALL
pseudo-operation; ECB
pseudo-operation)

Traps,
access violation, SA: 10-41
cache parity error, SA: 10-40
discussion, SA: 10-37
DMx, SA: 10-44
error correcting code, SA:

10-42
fetch cycle, SA: 9-30, 10-45,

10-46
hard parity error, SA: 10-40
machine check, SA: 10-44
missing memory module, SA:

10-41
page modified, SA: 10-41
read address, SA: 10-41
restr icted instruct ion, SA:

10-45
software breaks, SA: 10-45
STLB miss, SA: 10-41
STLB parity error, SA: 10-40
types and priorities, SA:

10-37, B-26
write address, SA: 10-44

TRFL (I), AL: 9-32; IS: 3-105

CX-35 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

TSTQ (I), AL: 9-33; IS: 3-106

TSTQ (V), AL: 8-31; IS: 2-115

TXA (V), AL: 8-9; IS: 2-115

TYA (V), AL: 8-9; IS: 2-115

Value table,
in conditional assembly, AL:

4-6, 4-9, 4-10

VFD pseudo-operation, AL: 5-10

Virtual address format, SA: 3-3,
4-2

U

Underflow, SA: 6-23

Unimplemented instruction package
(See DUII pseudo-operation;
LIR pseudo-operation)

Unpacked decimal data,
discussion, SA: 6-32
format, SA: 6-32
sign/digit representations for,

SA: 6-33

UPS support, SA: 10-18

User register files,
discussion, SA: 9-17
mnemonics used, SA: 9-18
overlap between field and

float ing-point regis ters,
SA: 6-17, 6-21, 9-20

OWNER, SA: 9-20
structure, SA: 9-19

V

V addressing mode, AL: 8-1 to
8-33

V mode,
behavior relating to 5-stage

pipeline, SA: 1-9
discussion, SA: 3-11
index limitations, SA: 3-8
input/output, SA: 11-2
performance, SA: 1-9

V mode machine instructions, AL:
8-1 to 8-33

Virtual memory,
addressing, SA: 3-1, 4-1
conversion to physical address,

SA: 4-2
data structures, SA: 4-3
details of access, SA: 4-19,

B-10
details of address translation,

SA: 4-26
discussion, SA: 2-5
DTAR format, SA: 4-15
hardware page map table, SA:

4-18
introduction, SA: 2-1
page faults, SA: 4-29
pages, SA: 2-5
protection rings, SA: 2-6
segment descriptor word, SA:

4-16
segments, SA: 2-5
size of, SA: 2-5, 3-1
space, SA: 2-5
STLB, SA: 2-8
timing information, SA: 4-24,

4-26
translation to physical memory,

SA: 4-1
use of disks, SA: 2-5

Virtual pages, SA: 2-5

Virtual queues, SA: 6-41

VPSD debugger,
description, AL: 14-2 to 14-13
input/output formats, AL: 14-4
subcommand line format, AL:

14-3

VPSD subcommands,
ACCESS, AL: 14-6
BREAKPOINT, AL: 14-6
BREGISTER, AL: 14-8
COPY, AL: 14-8
DUMP, AL: 14-8

Second Edition CX-36

COMPOSITE INDEX

r

VPSD subcommands (continued)
EFFECTIVE, AL: 14-9
EXECUTE, AL: 14-9
FA, AL: 14-9
FILL, AL: 14-9
FL, AL: 14-10
KEYS, AL: 14-10
LIST, AL: 14-10
LR, AL: 14-10
MODE, AL: 14-10
NOT-EQUAL, AL: 14-10
OPEN, AL: 14-11
PRINT, AL: 14-11
PROCEED, AL: 14-11
QUIT, AL: 14-11
RELOCATE, AL: 14-11
RUN, AL: 14-11
SB, AL: 14-12
SEARCH, AL: 14-12
SN, AL: 14-12
UPDATE, AL: 14-12
VERSION, AL: 14-12
WHERE, AL: 14-12
XB, AL: 14-13
XREGISTER, AL: 14-13
YREGISTER, AL: 14-13
ZERO, AL: 14-13

VPSD, debugging with, AL: 14-2
to 14-13

W

WAIT (I), AL: 9-34; IS: 3-107

WAIT (V), AL: 8-33; IS: 2-116

Wait list, SA: 9-7 to 9-9, C-6

Words, SA: 3-1

XAD (V)

XBTD (I

XBTD (V

XCA (V)

XCB (V)

XCM (I)

XCM (V)

XDTB (I

XDTB (V

XDV (I)

XDV (V)

XEC (V)

XED (I)

XED (V)

XH (I),

XMP (I)

XMP (V)

XMV (I)

XMV (V)

AL: 8-25; IS: 2-117

AL: 9-27; IS: 3-109

AL: 8-25; IS: 2-118

AL: 8-9; IS: 2-119

AL: 8-9; IS: 2-119

AL: 9-27; IS: 3-110

AL: 8-25; IS: 2-119

AL: 9-27; IS: 3-111

AL: 8-25; IS: 2-120

AL: 9-27

AL: 8-25

AL: 8-31

AL: 9-27

AL: 8-25

IS: 3-111

IS: 2-121

IS: 2-121

IS: 3-112

IS: 2-122

AL: 9-22; IS: 3-116

AL: 9-27

AL: 8-25

AL: 9-27

AL: 8-25

IS: 3-116

IS: 2-126

IS: 3-117

IS: 2-127

XSET pseudo-operation, AL: 4-13

Y register, SA: 3-7
X

X (I), AL: 9-22; IS: 3-108

X register, SA: 3-7, 8-11

XAC pseudo-operation, AL: 5-4

XAD (I), AL: 9-27; IS: 3-108

ZCM (I), AL: 9-32; IS: 3-119

ZCM (V), AL: 8-30; IS: 2-128

CX-37 Second Edition

ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

ZED (I), AL: 9-32; IS: 3-119

ZED (V), AL: 8-30; IS: 2-128

Zero, SA: 6-23

ZFIL (I), AL: 9-32; IS: 3-122

ZFIL (V), AL: 8-30; IS: 2-131

ZM (I), AL: 9-25; IS: 3-122

ZMH (I), AL: 9-25

ZMV (I), AL: 9-32

ZMV (V), AL: 8-30

ZMVD (I), AL: 9-32

ZMVD (V), AL: 8-30

ZTRN (I), AL: 9-32

ZTRN (V), AL: 8-30

IS: 3-122

IS: 3-123

IS: 2-131

IS: 3-123

IS: 2-132

IS: 3-124

IS: 2-133

Second Edition CX-38

SURVEY

READER RESPONSE FORM

DOC3059-2LA Assembly Language Programmer's Guide

Your feedback will help us continue to improve the quality, accuracy, and organization
of our publications.

1. How do you rate this document for overall usefulness?

□ exce l lent D very good □ good □ fa i r D poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer
companies?

D Much better D Slightly better D About the same
D Much worse D Slightly worse O Can't judge

5. Which other companies' manuals have you read?

N a m e : P o s i t i o n :

Company:_
Address:

Postal Code:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	vi
	vii
	viii
	About This Book
	ix
	x
	xi
	xii
	xiii
	Chapter 1
	Introduction
	1-1
	1-2
	Chapter 2
	Using PMA
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	Chapter 3
	Language Structure
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	Chapter 4
	Code Generation Pseudo-Operations
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	Chapter 5
	Constant Definition Pseudo-Operations
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	Chapter 6
	Loading and Linking Pseudo-Operations
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	Chapter 7
	Macro Definition Pseudo-Operations
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	Chapter 8
	Machine Instructions -- V Mode
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	Chapter 9
	Machine Instructions -- I Mode
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	9-34
	Chapter 10
	Machine Instructions -- IX Mode
	10-1
	10-2
	10-3
	Chapter 11
	Macro Facility
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	Chapter 12
	Using Subroutines
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	Chapter 13
	Linking and Loading
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	Chapter 14
	Program Execution and Debugging
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	Appendices
	Appendix A
	Assembler Error messages
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	Appendix B
	Instruction Summary Chart
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	Appendix C
	Prime Extended Character Set
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	Indexes
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	X-20
	X-21
	Composite Index
	CX-1
	CX-2
	CX-3
	CX-4
	CX-5
	CX-6
	CX-7
	CX-8
	CX-9
	CX-10
	CX-11
	CX-12
	CX-13
	CX-14
	CX-15
	CX-16
	CX-17
	CX-18
	CX-19
	CX-20
	CX-21
	CX-22
	CX-23
	CX-24
	CX-25
	CX-26
	CX-27
	CX-28
	CX-29
	CX-30
	CX-31
	CX-32
	CX-33
	CX-34
	CX-35
	CX-36
	CX-37
	CX-38
	Survey
	
	

